in

Species identity and diversity effects on invasion resistance of tropical freshwater plant communities

  • 1.

    Gallardo, B., Clavero, M., Sanchez, M. I. & Vila, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 22, 151–163 (2016).

  • 2.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28 (2013).

  • 3.

    Lowry, E. et al. Biological invasions: a field synopsis, systematic review, and database of the literature. Trends Ecol. Evol. 3, 182–196 (2013).

    • Article
    • Google Scholar
  • 4.

    Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).

  • 5.

    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).

  • 6.

    Thomaz, S. M., Mormul, R. P. & Michelan, T. S. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: a review of tropical freshwater ecosystems. Hydrobiologia 746, 39–59 (2015).

    • Article
    • Google Scholar
  • 7.

    Rodríguez, J. P. Exotic species introductions into South America: an underestimated threat? Biodivers. Conserv. 10, 1983–1996 (2001).

    • Article
    • Google Scholar
  • 8.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

  • 9.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

  • 10.

    WWF. Living Planet Report – 2018: Aiming Higher. (2018).

  • 11.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science (80-.). 287, 1770–1774 (2000).

  • 12.

    Lövei, G. L. & Lewinsohn, T. M. & Network, the biological I. in M. R. Megadiverse developing countries face huge risks from invasives. Trends Ecol. Evol. 27, 3–4 (2012).

    • Article
    • Google Scholar
  • 13.

    Sax, D. F. Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. J. Biogeogr. 28, 139–150 (2001).

    • Article
    • Google Scholar
  • 14.

    Freestone, A. L., Ruiz, G. M. & Torchin, M. E. Stronger biotic resistance in tropics relative to temperate zone: effects of predation on marine invasion dynamics. Ecology 94, 1370–1377 (2013).

  • 15.

    Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).

    • Article
    • Google Scholar
  • 16.

    Elton, C. S. The Ecology of Invasions by Animals and Plants, https://doi.org/10.1007/978-1-4899-7214-9 (Springer US, 1958).

  • 17.

    Naeem, S. et al. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91, 97–108 (2000).

    • Article
    • Google Scholar
  • 18.

    Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).

    • Article
    • Google Scholar
  • 19.

    Wardle, D. A. Experimental demonstration that plant diversity reduces invasibility – evidence of a biological mechanism or a consequence of sampling effect? Oikos 95, 161–170 (2001).

    • Article
    • Google Scholar
  • 20.

    Petruzzella, A., Manschot, J., van Leeuwen, C. H. A., Grutters, B. M. C. & Bakker, E. S. Mechanisms of invasion resistance of aquatic plant communities. Front. Plant Sci. 9 (2018).

  • 21.

    Hector, A., Dobson, K., Minns, A., Bazeley-White, E. & Lawton, J. H. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol. Res. 16, 819–831 (2001).

    • Article
    • Google Scholar
  • 22.

    Alofs, K. M. & Jackson, D. A. Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. Ecology 95, 3259–3270 (2014).

    • Article
    • Google Scholar
  • 23.

    Michelan, T. S., Thomaz, S. M. & Bini, L. M. Native macrophyte density and richness affect the invasiveness of a tropical poaceae species. PLoS One 8 (2013).

  • 24.

    Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl. Acad. Sci. USA 103, 5841–5845 (2006).

  • 25.

    Burns, J. H. & Strauss, S. Y. More closely related species are more ecologically similar in an experimental test. Proc. Natl. Acad. Sci. 108, 5302–5307 (2011).

  • 26.

    Darwin, C. R. The Origin of Species. (John Murray, 1859).

  • 27.

    Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).

  • 28.

    Davies, K. F., Cavender-Bares, J. & Deacon, N. Native communities determine the identity of exotic invaders even at scales at which communities are unsaturated. Divers. Distrib. 17, 35–42 (2011).

    • Article
    • Google Scholar
  • 29.

    Hussner, A. Alien aquatic plant species in European countries. Weed Res. 52, 297–306 (2012).

    • Article
    • Google Scholar
  • 30.

    Sousa, W. T. Z., Thomaz, S. M., Murphy, K. J., Silveira, M. J. & Mormul, R. P. Environmental predictors of the occurrence of exotic Hydrilla verticillata (L.f.) Royle and native Egeria najas Planch. in a sub-tropical river floodplain: The Upper River Paraná, Brazil. Hydrobiologia 632, 65–78 (2009).

    • Article
    • Google Scholar
  • 31.

    Sousa, W. T. Z. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669, 1–20 (2011).

    • Article
    • Google Scholar
  • 32.

    Umetsu, C. A., Evangelista, H. B. A. & Thomaz, S. M. The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquat. Ecol. 46, 443–449 (2012).

    • Article
    • Google Scholar
  • 33.

    Wu, Z. et al. Establishing submersed macrophytes via sinking and colonization of shoot fragments clipped off manually. Wuhan Univ. J. Nat. Sci. 12, 553–557 (2007).

  • 34.

    Chadwell, T. B. & Engelhardt, K. A. M. Effects of pre-existing submersed vegetation and propagule pressure on the invasion success of Hydrilla verticillata. J. Appl. Ecol. 45, 515–523 (2008).

    • Article
    • Google Scholar
  • 35.

    Spencer, D. F. & Rejmánek, M. Propagule type influences competition between two submersed aquatic macrophytes. Oecologia 81, 132–137 (1989).

  • 36.

    Thomaz, S. M. et al. Temporal trends and effects of diversity on occurrence of exotic macrophytes in a large reservoir. Acta Oecologica 35, 614–620 (2009).

  • 37.

    Thomaz, S. M., Souza, D. C. & Bini, L. M. Species richness and beta diversity of aquatic macrophytes in a large subtropical reservoir (Itaipu Reservoir, Brazil): The influence of limnology and morphometry. Hydrobiologia 505, 119–128 (2003).

    • Article
    • Google Scholar
  • 38.

    Pierini, S. A. & Thomaz, S. M. Effects of inorganic carbon source on photosynthetic rates of Egeria najas Planchon and Egeria densa Planchon (Hydrocharitaceae). Aquat. Bot. 78, 135–146 (2004).

  • 39.

    de Freitas, A. & Thomaz, S. M. Inorganic carbon shortage may limit the development of submersed macrophytes in habitats of the Parana River basin. Acta Limnol. Bras. 23, 57–62 (2011).

    • Article
    • Google Scholar
  • 40.

    Adamec, L. A comparison of photosynthetic and respiration rates in six aquatic carnivorous Utricularia species differing in morphology. Aquat. Bot. 111, 89–94 (2013).

  • 41.

    Camargo, A. F. M., Pezzato, M. M., Henry-Silva, G. G. & Assumpção, A. M. Primary production of Utricularia foliosa L., Egeria densa Planchon and Cabomba furcata Schult & Schult.f from rivers of the coastal plain of the State of São Paulo, Brazil. Hydrobiologia 570, 35–39 (2006).

    • Article
    • Google Scholar
  • 42.

    Marraffini, M. L. & Geller, J. B. Species richness and interacting factors control invasibility of a marine community. Proc. R. Soc. B Biol. Sci. 282, 20150439 (2015).

  • 43.

    Stachowicz, J. J., Fried, H., Osman, R. W. & Whitlatch, R. B. B. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83, 2575–2590 (2002).

    • Article
    • Google Scholar
  • 44.

    Fargione, J. E. & Tilman, D. Diversity decreases invasion via both sampling and complementarity effects. Ecol. Lett. 8, 604–611 (2005).

    • Article
    • Google Scholar
  • 45.

    Yu, H. H., Wang, L. G., Liu, C. H. & Fan, S. F. Coverage of native plants is key factor influencing the invasibility of freshwater ecosystems by exotic plants in China. Front. Plant Sci. 9 (2018).

  • 46.

    Capers, R. S., Selsky, R., Bugbee, G. J. & White, J. C. Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness. Ecology 88, 3135–3143 (2007).

  • 47.

    Hofstra, D., Clayton, J., Green, J. & Auger, M. Competitive performance of Hydrilla verticillata in New Zealand. Aquat. Bot. 63, 305–324 (1999).

    • Article
    • Google Scholar
  • 48.

    Hussner, A. et al. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat. Bot. 136, 112–137 (2017).

    • Article
    • Google Scholar
  • 49.

    Barrat-Segretain, M. H. Competition between invasive and indigenous species: Impact of spatial pattern and developmental stage. Plant Ecol. 180, 153–160 (2005).

    • Article
    • Google Scholar
  • 50.

    Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592 (2009).

  • 51.

    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

  • 52.

    Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).

    • Article
    • Google Scholar
  • 53.

    Langeland, K. A. Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), ‘The perfect aquatic weed’. Castanea 61, 293–304 (1996).

    • Google Scholar
  • 54.

    Kimbro, D. L., Cheng, B. S. & Grosholz, E. D. Biotic resistance in marine environments. Ecol. Lett. 16, 821–833 (2013).

  • 55.

    Craven, D. et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B Biol. Sci. 371 (2016).

  • 56.

    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    • Article
    • Google Scholar
  • 57.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 58.

    Engelhardt, K. A. M. & Ritchie, M. E. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411, 687–689 (2001).

  • 59.

    Zhang, Q., Liu, Y.-P., Luo, F.-L., Dong, B.-C. & Yu, F.-H. Does species richness affect the growth and water quality of submerged macrophyte assemblages? Aquat. Bot., https://doi.org/10.1016/J.AQUABOT.2018.11.006 (2018).

  • 60.

    Riis, T. et al. Submerged freshwater plant communities do not show species complementarity effect in wetland mesocosms. Biol. Lett. 14, 20180635 (2018).

  • 61.

    Ricciardi, A. & Atkinson, S. K. Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecol. Lett. 7, 781–784 (2004).

    • Article
    • Google Scholar
  • 62.

    Ricciardi, A., Hoopes, M. F., Marchetti, M. P. & Lockwood, J. L. Progress toward understanding the ecological impacts of non-native Species. Ecol. Monogr. 83, 263–282 (2013).

    • Article
    • Google Scholar
  • 63.

    Zhang, Y. et al. Global loss of aquatic vegetation in lakes. Earth-Science Rev. 173, 259–265 (2017).

  • 64.

    Cook, C. D. K. & Luond, R. A revision of the genus Hydrilla (Hydrocharitaceae). Aquat. Bot. 13, 485–504 (1982).

    • Article
    • Google Scholar
  • 65.

    Li, H.-L. et al. Vegetative propagule pressure and water depth affect biomass and evenness of submerged macrophyte communities. PLoS One 10 (2015).

  • 66.

    Riis, T., Madsen, T. V. & Sennels, R. S. H. H. Regeneration, colonisation and growth rates of allofragments in four common stream plants. Aquat. Bot. 90, 209–212 (2009).

    • Article
    • Google Scholar
  • 67.

    Riis, T. & Sand-Jensen, K. Dispersal of plant fragments in small streams. Freshw. Biol. 51, 274–286 (2006).

    • Article
    • Google Scholar
  • 68.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    • Article
    • Google Scholar
  • 69.

    Pinheiro, J., Bates, D. M., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3 (2018).

  • 70.

    R Core Team. R: A language and environment for statistical computing. (2017).


  • Source: Ecology - nature.com

    The effect of phylogeographic history on species boundaries: a comparative framework in Hyla tree frogs

    The bits of wire that can devastate lion populations