Costello, M. J. Biodiversity: The known, unknown, and rates of extinction. Curr. Biol. 25(9), 368–371 (2015).
Fontaine, B. et al. New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE 7, 5 (2012).
Strauss, S. Y. & Irwin, R. E. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu. Rev. Ecol. Evol. Syst. 35, 435–466 (2004).
Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80 (2016).
Burrascano, S. et al. Congruence across taxa and spatial scales: Are we asking too much of species data?. Glob. Ecol. Biogeogr. 27, 980–990 (2018).
Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manag. 298, 27–38 (2019).
Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28 (2011).
Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30(3), 279–338 (1960).
Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21(2–3), 213–251 (1972).
Tuomisto, H. A diversity of beta diversities: sStraightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2–22 (2010).
Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1), 23–45 (2010).
Ellison, A. M. Partitioning diversity 1. Ecology 91(7), 1962–1963 (2010).
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143 (2010).
Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21(7), 760–771 (2012).
Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120, 1625–1638 (2011).
Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16(8), 951–963 (2013).
Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3(5), 808–812 (2012).
Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27(1), 96–109 (2018).
Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10(5), e0127692 (2015).
Da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24(9), 1277–1290 (2018).
Sanders, N. J. & Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 35(1), 1–3 (2012).
Willig, M. R. & Presley, S. J. The spatial configuration of taxonomic biodiversity along a tropical elevational gradient: α-, β-, and γ-partitions. Biotropica 51(2), 104–116 (2019).
Fontana, V. et al. Decomposing the land-use specific response of plant functional traits along environmental gradients. Sci. Total Environ. 599, 750–759 (2017).
Viterbi, R. et al. Patterns of biodiversity in the northwestern Italian Alps: A multi-taxa approach. Commun. Ecol. 14(1), 18–30 (2013).
Leingärtner, A., Krauss, J. & Steffan-Dewenter, I. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175(2), 613–623 (2014).
Chatzaki, M., Lymberakis, P., Markakis, G. & Mylonas, M. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. J. Biogeogr. 32(5), 813–831 (2005).
Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and Energy. J. Biogeogr. 42, 1222–1232 (2015).
Spitale, D. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. J. Veg. Sci. 27(4), 844–853 (2016).
Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42(9), 1776–1786 (2015).
Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19(4), 729–739 (2015).
Tello, J. S. et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 10(3), e0121458 (2015).
Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).
Hilpold, A. et al. Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment. Biodivers. Conserv. 27(14), 3729–3744 (2018).
Lasen, C. & Wilhalm, T. Natura-2000-Lebensräume in Südtirol (Abteilung Natur und Landschaft, Autonome Provinz Bozen-Südtirol, 2004).
Pollard, E. & Yates, T. J. Monitoring butterflies for ecology and conservation: The British butterfly monitoring scheme (Springer Science & Business Media, Berlin, 1994).
Elzinga, C. L., Salzer, D. W., Willoughby, J. W. & Gibbs, J. P. Monitoring plant and animal populations (Blackwell, Oxford, 2001).
Pascher, K. et al. Kartierhandbuch zur Biodiversitätserfassung im Agrarraum: Gefäßpflanzen, Tagfalter, Heuschrecken, sowie Zuordnung von Landschaftsstrukturen zu ausgewählten Biotoptypen. Forschungsbericht im Auftrag der Bundesministerien für Gesundheit, Sektion II und Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2009).
Schindler, S. et al. Österreichisches Biodiversitätsmonitoring (ÖBM) – Kulturlandschaft: Konzept für die Erfassung von Status und Trends der Biodiversität (2017)
Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).
Laub, C. A., Youngman, R. R., Love, K. & Mize, T. Using pitfall traps to monitor insect activity (Virginia Tech, Blacksburg, 2009).
Churchill, T. B. & Arthur, J. M. Measuring spider richness: Effects of different sampling methods and spatial and temporal scales. J. Insect Conserv. 3(4), 287–295 (1999).
Schlick-Steiner, et al. Assessing ant assemblages: Pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insect. Soc. 53, 274–281 (2006).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93(12), 2533–2547 (2012).
Hixon, G., Thompson, C. & Bichteler, A. drsmooth: Dose-Response Modeling with Smoothing Splines. R package version 1.9.0 (2015).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint, arXiv:1406.5823 (2014).
Lawrence Lodge, R. H. E. et al. Spatial autocorrelation in plant communities: Vegetation texture versus species composition. Ecography 30(6), 801–811 (2007).
Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
R Core Team R: A language and environment for statistical computing.https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2019).
RStudio Team RStudio: Integrated Development for R. https://www.rstudio.com/ (RStudio, Inc., Boston, 2019).
Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453(7192), 216–2019 (2008).
Nunes, C. A., Braga, R. F., Figueira, J. E. C., de Siqueira Neves, F. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11(6), e0157442 (2016).
Ah-Peng, C. et al. Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island. Acta Oecol. 42, 58–65 (2012).
Hernández-Hernández, R. et al. Scaling α-and β-diversity: Bryophytes along an elevational gradient on a subtropical oceanic Island (La Palma, Canary Islands). J. Veg. Sci. 28(6), 1209–1219 (2017).
Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8(2), 224–239 (2005).
Perillo, L. N., de Siqueira Neves, F., Antonini, Y. & Martins, R. P. Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE 12(7), e0182054 (2017).
Descombes, P., Vittoz, P., Guisan, A. & Pellissier, L. Uneven rate of plant turnover along elevation in grasslands. Alpine Bot. 127(1), 53–63 (2017).
Schellenberger Costa, D. et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Divers. Distrib. 24(12), 1869–1882 (2018).
Source: Ecology - nature.com