in

Strategies to revise agrosystems and breeding to control Fusarium wilt of banana

  • 1.

    García-Bastidas, F. et al. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 104, 994 (2020).

    Google Scholar 

  • 2.

    FAOSTAT Crops (Food and Agriculture Organization of the United Nations, 2020); http://www.fao.org/faostat/en/#data/QC

  • 3.

    Varma, V. & Bebber, D. P. Climate change impacts on banana yields around the world. Nat. Clim. Change 9, 752–757 (2019).

    ADS  Google Scholar 

  • 4.

    Simmonds, N. W. & Shepherd, K. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Bot. 55, 302–312 (1955).

    Google Scholar 

  • 5.

    Gold, C. S., Kiggundu, A., Abera, A. M. K. & Karamura, D. Diversity, distribution and farmer preference of Musa cultivars in Uganda. Exp. Agric. 38, 39–50 (2002).

    Google Scholar 

  • 6.

    Gambart, C. et al. Impact and opportunities of agroecological intensification strategies on farm performance: a case study of banana-based systems in central and south-western Uganda. Front. Sustain. Food Syst. 23, 87 (2020).

    Google Scholar 

  • 7.

    Wielemaker, F. in Achieving Sustainable Cultivation of Bananas. Volume 1: Cultivation Techniques (eds Kema, G. H. J. & Drenth, A.) Ch. 15 (Burleigh Dodds Science Publishing, 2018).

  • 8.

    Ordonez, N. et al. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet. PLOS Pathog. 11, e1005197 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Ndayihanzamaso, P. et al. The development of a multiplex PCR assay for the detection of Fusarium oxysporum f. sp. cubense lineage VI strains in East and Central Africa. Eur. J. Plant Pathol. https://doi.org/10.1007/s10658-020-02092-9 (2020).

  • 10.

    Soluri, J. Accounting for taste: export bananas, mass markets, and Panama disease. Environ. Hist. 7, 386–410 (2002).

    Google Scholar 

  • 11.

    Stover, R. H. Disease management strategies and the survival of the banana industry. Annu. Rev. Phytopathol. 24, 83–91 (1986).

    Google Scholar 

  • 12.

    Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C. & Mercado-Blanco, J. Biological control agents against Fusarium wilt of banana. Front. Microbiol. 10, 616 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Kaushal, M., Mahuku, G. & Swennen, R. Metagenomic insights of the root colonizing microbiome associated with symptomatic and non-symptomatic bananas in Fusarium wilt infected fields. Plants. 9, 263 (2020).

    CAS  PubMed Central  Google Scholar 

  • 14.

    Mollot, G., Tixier, P., Lescourret, F., Quilici, S. & Duyck, P. F. New primary resource increases predation on a pest in a banana agroecosystem. Agric. For. Entomol. 14, 317–323 (2012).

    Google Scholar 

  • 15.

    Djigal, D. et al. Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol. Biochem. 48, 142–150 (2012).

    CAS  Google Scholar 

  • 16.

    Karangwa, P. et al. Genetic Diversity of Fusarium oxysporum f. sp. cubense in East and Central Africa. Plant Dis. 102, 552–560 (2018).

    CAS  PubMed  Google Scholar 

  • 17.

    Jassogne, L. et al. in Banana Systems in the Humid Highlands of Sub-Saharan Africa (eds Blomme, G. et al.) 144–149 (CABI, 2013).

  • 18.

    Norgrove, L. & Hauser, S. Yield of plantain under different tree densities and ‘slash and mulch’ versus ‘slash and burn’ management in a agrisilvicultural system in southern Cameroon. Field Crops Res. 78, 185–195 (2002).

    Google Scholar 

  • 19.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Deltour, P. et al. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: influence of soil characteristics and plant community. Agric. Ecosyst. Environ. 239, 173–181 (2017).

    Google Scholar 

  • 21.

    Zhu, S. & Morel, J.-B. Molecular mechanisms underlying microbial disease control in intercropping. Mol. Plant Microbe Interact. 32, 20–24 (2019).

    CAS  PubMed  Google Scholar 

  • 22.

    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M. & Berendsen, R. L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 42, 2860–2870 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).

    CAS  PubMed  Google Scholar 

  • 25.

    Wille, L., Messmer, M. M., Studer, B. & Hohmann, P. Insights to plant-microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes. Plant Cell Environ. 42, 20–40 (2019).

    CAS  PubMed  Google Scholar 

  • 26.

    Christelová, P. et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 26, 801–824 (2016).

    Google Scholar 

  • 27.

    Ortiz, R. & Swennen, R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32, 158–169 (2014).

    CAS  PubMed  Google Scholar 

  • 28.

    Zuo, C. et al. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur. J. Plant Pathol. 151, 723–734 (2018).

    Google Scholar 

  • 29.

    Chen, Y. F. et al. Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathol. 62, 112–119 (2013).

    CAS  Google Scholar 

  • 30.

    Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Commun. 8, 1496 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 31.

    McFadden, B. R. The unknowns and possible implications of mandatory labeling. Trends Biotechnol. 35, 1–3 (2017).

    CAS  PubMed  Google Scholar 

  • 32.

    Cheng, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667–697 (2019).

    Google Scholar 

  • 33.

    Zaidi, S. S. -E. -A. et al. New plant breeding technologies for food security. Science 363, 1390–1391 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Zhang, Y., Pribil, M., Palmgren, M. & Gao, C. A CRISPR way for accelerating improvement of food crops. Nat. Food 1, 200–205 (2020).

    Google Scholar 

  • 35.

    Ntui, V. O., Tripathi, J. N. & Tripathi, L. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Curr. Plant Biol. 21, 100128 (2020).

    Google Scholar 

  • 36.

    Shao, X. et al. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnol. J. 18, 17–19 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Kaur, N. et al. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct. Integr. Genomics 18, 89–99 (2018).

    CAS  PubMed  Google Scholar 

  • 38.

    Naim, F. et al. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res. 27, 451–460 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Klimyuk, V. I. et al. A chromodomain protein encoded by the Arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell 11, 87–99 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Zhang, Y., Malzahn, A. A., Sretenovic, S. & Qi, Y. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants 5, 778–794 (2019).

    PubMed  Google Scholar 

  • 41.

    Strosse, H. et al. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci. 170, 104–112

  • 42.

    Escalant, J. V. & Teisson, C. Somatic embryogenesis and plants from immature zygotic embryos of species Musa acuminata and Musa balbisiana. Plant Cell Rep. 7, 181–186 (1989).

    Google Scholar 

  • 43.

    Kelliher, T. et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 37, 287–292 (2019).

    CAS  PubMed  Google Scholar 

  • 44.

    Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).

    PubMed  Google Scholar 

  • 45.

    Veillet, F. et al. Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR / Cas9 cytidine base editor. Int. J. Mol. Sci. 20, 402 (2019).

    PubMed Central  Google Scholar 

  • 46.

    Demirer, G. S. et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat. Nanotechnol. 14, 456–464 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Svitashev, S. et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 16, 13274 (2016).

    ADS  Google Scholar 

  • 48.

    Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  PubMed  Google Scholar 

  • 50.

    Sági, L. et al. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Nat. Biotechnol. 13, 481–485 (1995).

    Google Scholar 

  • 51.

    Sági, L., Remy, S., Panis, B., Swennen, R. & Volckaert, G. Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe’, ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions. Plant Cell Rep. 13, 262–266 (1994).

    PubMed  Google Scholar 

  • 52.

    Oh, T. J. et al. Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiol. Plant. 129, 766–74 (2007).

    CAS  Google Scholar 

  • 53.

    Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Panis, B., Withers, L. & De Langhe, E. Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. Cryo Lett. 11, 337–350 (1990).

    Google Scholar 

  • 55.

    Ghosh, S. et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat. Protoc. 13, 2944–2963 (2018).

    CAS  PubMed  Google Scholar 

  • 56.

    Arinaitwe, I. K. et al. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 215, 175 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Sun, J. et al. Comparative transcriptome analysis reveals resistance-related genes and pathways in Musa acuminata banana ‘Guijiao 9’ in response to Fusarium wilt. Plant Physiol. Biochem. 141, 83–94 (2019).

    CAS  PubMed  Google Scholar 

  • 58.

    Zhang, L. et al. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f. sp. cubense tropical race 4. Sci. Rep. 9, 8199 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Li, C. et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genom. 14, 851 (2013).

    Google Scholar 

  • 60.

    Chatterjee, M. et al. Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom. 15, 949 (2015).

    Google Scholar 

  • 61.

    Shen, Y. & Diener, A. C. Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLOS Genet. 9, e1003525 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    D’Hont, A., Denoeud, F. & Aury, J. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).

    ADS  PubMed  Google Scholar 

  • 63.

    Côte, F. et al. Agro-ecological intensification in banana and plantain (Musa spp.): an approach to develop more sustainable cropping systems for both smallholder farmers and large-scale commercial producers. Acta Hortic. 879, 457–463 (2010).

    Google Scholar 

  • 64.

    Tixier, P., Malezieux, E. & Dorel, M. SIMBA-POP: a cohort population model for long-term simulation of banana crop harvest. Ecol. Model. 180, 407–417 (2004).

    Google Scholar 

  • 65.

    Carvajal-Yepes, M. et al. A global surveillance system for crop diseases. Science 364, 1237–1239 (2019).

    ADS  CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air