in

Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study

  • 1.

    Selwitz, R. H., Ismail, A. I. & Pitts, N. B. Dental caries. The Lancet. 369, 51–59, https://doi.org/10.1016/s0140-6736(07)60031-2 (2007).

  • 2.

    Takahashi, N. & Nyvad, B. The Role of Bacteria in the Caries Process. J. Dent. Res. 90, 294–303, https://doi.org/10.1177/0022034510379602 (2010).

    • Article
    • Google Scholar
  • 3.

    Pitts, N. B. et al. Dental caries. Nat. Rev. Dis. Primers. 3, 17030, https://doi.org/10.1038/nrdp.2017.30 (2017).

    • Article
    • Google Scholar
  • 4.

    Xu, X. et al. Meeting report: a close look at oral biofilms and microbiomes. Int. J. Oral. Sci. 10, 28, https://doi.org/10.1038/s41368-018-0030-1 (2018).

  • 5.

    Koo, H., Falsetta, M. L. & Klein, M. I. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J. Dent. Res. 92, 1065–1073, https://doi.org/10.1177/0022034513504218 (2013).

  • 6.

    Fontana, M., Young, D. A., Wolff, M. S., Pitts, N. B. & Longbottom, C. Defining Dental Caries for 2010 and Beyond. Dent. Clin. North Am. 54, 423–440, https://doi.org/10.1016/j.cden.2010.03.007 (2010).

    • Article
    • Google Scholar
  • 7.

    Marsh, P. D. Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res. 8, 263–271, https://doi.org/10.1177/08959374940080022001 (1994).

  • 8.

    Hoare, A., Marsh, P. D., Diaz, P. I. Ecological Therapeutic Opportunities for Oral Diseases. Microbiol. Spectr. 5; https://doi.org/10.1128/microbiolspec.BAD-0006-2016 (2017).

  • 9.

    Kleinberg, I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit. Rev. Oral Biol. Med. 13, 108–125, https://doi.org/10.1177/154411130201300202 (2002).

  • 10.

    Marsh, P. D. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 6 Suppl 1, S14, https://doi.org/10.1186/1472-6831-6-S1-S14 (2006).

  • 11.

    Marsh, P. D. Are dental diseases examples of ecological catastrophes? Microbiology. 149, 279–294, https://doi.org/10.1099/mic.0.26082-0 (2003).

  • 12.

    Zero, D. T. Sugars – the arch criminal? Caries Res. 38, 277–285, https://doi.org/10.1159/000077767 (2004).

  • 13.

    Holloway, P. J. & Moore, W. J. The role of sugar in the aetiology of dental caries. J. Dent. 11, 189–190, https://doi.org/10.1016/0300-5712(83)90182-3 (1983).

    • Article
    • Google Scholar
  • 14.

    Head, D. A., Devine, D. & Marsh, P. D. In silico modelling to differentiate the contribution of sugar frequency versus total amount in driving biofilm dysbiosis in dental caries. Sci. Rep. 7, 17413, https://doi.org/10.1038/s41598-017-17660-z (2017).

  • 15.

    Palacios, C. et al. Association between Type, Amount, and Pattern of Carbohydrate Consumption with Dental Caries in 12-Year-Olds in Puerto Rico. Caries Res. 50, 560–570, https://doi.org/10.1159/000450655 (2016).

  • 16.

    Olczak-Kowalczyk, D., Turska, A., Gozdowski, D. & Kaczmarek, U. Dental caries level and sugar consumption in 12-year-old children from Poland. Adv. Clin. Exp. Med. 25, 545–550, https://doi.org/10.17219/acem/61615 (2016).

    • Article
    • Google Scholar
  • 17.

    Leme, A. F. P., Koo, H., Bellato, C. M., Bedi, G. & Cury, J. A. The Role of Sucrose in Cariogenic Dental Biofilm Formation—New Insight. J. Dent. Res. 85, 878–887, https://doi.org/10.1177/154405910608501002 (2016).

    • Article
    • Google Scholar
  • 18.

    Rolla, G., Scheie, A. A. & Ciardi, J. E. Role of sucrose in plaque formation. Scand. J. Dent. Res. 93, 105–111, https://doi.org/10.1111/j.1600-0722.1985.tb01317.x (1985).

  • 19.

    Schilling, K. M. & Bowen, W. H. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans. Infect. Immun. 60, 284–295 (1992).

  • 20.

    Dibdin, G. H. & Shellis, R. P. Physical and Biochemical Studies of Streptococcus mutans Sediments Suggest New Factors Linking the Cariogenicity of Plaque with its Extracellular Polysaccharide Content. J. Dent. Res. 67, 890–895, https://doi.org/10.1177/00220345880670060101 (2016).

    • Article
    • Google Scholar
  • 21.

    Liu, Y., Ren, Z., Hwang, G. & Koo, H. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment. Adv. Dent. Res. 29, 86–92, https://doi.org/10.1177/0022034517736497 (2018).

  • 22.

    Reese, S. & Guggenheim, B. A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms. Microsc. Res. Tech. 70, 816–822, https://doi.org/10.1002/jemt.20471 (2007).

  • 23.

    Horton, W. A., Jacob, A. E., Green, R. M., Hillier, V. F. & Drucker, D. B. The cariogenicity of sucrose, glucose and maize starch in gnotobiotic rats mono-infected with strains of the bacteria Streptococcus mutans, Streptococcus salivarius and Streptococcus milleri. Arch. Oral Biol. 30, 777–780, https://doi.org/10.1016/0003-9969(85)90131-1 (1985).

  • 24.

    Newbrun, E. Sucrose, the arch criminal of dental caries. ASDC J. Dent. Child. 36, 239–248 (1969).

    • CAS
    • Google Scholar
  • 25.

    Grenby, T. H. & Hutchinson, J. B. The effects of diets containing sucrose, glucose or fructose on experimental dental caries in two strains of rats. Arch. Oral Biol. 14, 373–380, https://doi.org/10.1016/0003-9969(69)90091-0 (1969).

  • 26.

    Birkhed, D., Topitsoglou, V., Edwardsson, S. & Frostell, G. Cariogenicity of invert sugar in long-term rat experiments. Caries Res. 15, 302–307, https://doi.org/10.1159/000260530 (1981).

  • 27.

    Birkhed, D., Frostell, G. & Lamm, C. J. Cariogenicity of Glucose, Sucrose and Amylopectin in Rats and Hamsters Infected and Noninfected with Streptococcus mutans. Caries Res. 14, 441–447, https://doi.org/10.1159/000260488 (1980).

  • 28.

    Cury, J. A., Rebelo, M. A., Del Bel Cury, A. A., Derbyshire, M. T. & Tabchoury, C. P. Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res. 34, 491–497, https://doi.org/10.1159/000016629 (2000).

  • 29.

    Minah, G. E., Lovekin, G. B. & Finney, J. P. Sucrose-induced ecological response of experimental dental plaques from caries-free and caries-susceptible Human volunteers. Infect. Immun. 34, 662–675 (1981).

  • 30.

    Staat, R. H., Gawronski, T. H., Cressey, D. E., Harris, R. S. & Folke, L. E. A. Effects of Dietary Sucrose Levels on the Quantity and Microbial Composition of Human Dental Plaque. J. Dent. Res. 54, 872–880, https://doi.org/10.1177/00220345750540042801 (2016).

    • Article
    • Google Scholar
  • 31.

    Cury, J. A., Rebello, M. A. & Del Bel Cury, A. A. In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res. 31, 356–360, https://doi.org/10.1159/000262418 (1997).

  • 32.

    Cury, J. A., Francisco, S. B., Del Bel Cury, A. A. & Tabchoury, C. P. In situ study of sucrose exposure, mutans streptococci in dental plaque and dental caries. Braz. Dent. J. 12, 101–104 (2001).

    • CAS
    • Google Scholar
  • 33.

    Nobre dos Santos, M., Melo dos Santos, L., Francisco, S. B. & Cury, J. A. Relationship among dental plaque composition, daily sugar exposure and caries in the primary dentition. Caries Res. 36, 347–352, https://doi.org/10.1159/000065959 (2002).

  • 34.

    van der Hoeven, J. S., Toorop, A. I. & Mikx, F. H. M. Symbiotic Relationship of Veillonella alcalescens and Streptococcus mutans in Dental Plaque in Gnotobiotic Rats. Caries Res. 12, 142–147, https://doi.org/10.1159/000260324 (1978).

  • 35.

    Mikx, F. H. M. & van der Hoeven, J. S. Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch. Oral Biol. 20, 407–410, https://doi.org/10.1016/0003-9969(75)90224-1 (1975).

  • 36.

    Kolenbrander, P. The Genus Veillonella. 1022–1040; https://doi.org/10.1007/0-387-30744-3_36 (2006).

  • 37.

    Becker, M. R. et al. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol. 40, 1001–1009, https://doi.org/10.1128/jcm.40.3.1001-1009.2002 (2002).

  • 38.

    Zheng, X. et al. Involvement of gshAB in the interspecies competition within oral biofilm. J. Dent. Res. 92, 819–824, https://doi.org/10.1177/0022034513498598 (2013).

  • 39.

    Mitrakul, K., Vongsawan, K., Sriutai, A. & Thosathan, W. Association between S. mutans and S. sanguinis in Severe Early childhood Caries and Caries-Free Children A Quantitative Real-Time PCR Analysis. J. Clin. Pediatr. Dent. 40, 281–289, https://doi.org/10.17796/1053-4628-40.4.281 (2016).

    • Article
    • Google Scholar
  • 40.

    Loesche, W. J., Rowan, J., Straffon, L. H. & Loos, P. J. Association of Streptococcus mutants with human dental decay. Infect. Immun. 11, 1252–1260 (1975).

  • 41.

    Tian, Y. et al. Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol. Oral Microbiol. 25, 357–367, https://doi.org/10.1111/j.2041-1014.2010.00585.x (2010).

  • 42.

    Edlund, A. et al. An in vitro biofilm model system maintaining a highly reproducible species and metabolic diversity approaching that of the human oral microbiome. Microbiome. 1, 25, https://doi.org/10.1186/2049-2618-1-25 (2013).

  • 43.

    Frostell, G., Keyes, P. H. & Larson, R. H. Effect of Various Sugars and Sugar Substitutes on Dental Caries in Hamsters and Rats. J. Nutr. 93, 65–76, https://doi.org/10.1093/jn/93.1.65 (1967).

  • 44.

    Campbell, R. G. & Zinner, D. D. Effect of Certain Dietary Sugars on Hamster Caries. J. Nutr. 100, 11–20, https://doi.org/10.1093/jn/100.1.11 (1970).

  • 45.

    Sheiham, A. Sugars and Dental Decay. The Lancet. 321, 282–284, https://doi.org/10.1016/s0140-6736(83)91696-3 (1983).

    • Article
    • Google Scholar
  • 46.

    van Loveren, C. Sugar Restriction for Caries Prevention: Amount and Frequency. Which Is More Important? Caries Res. 53, 168–175, https://doi.org/10.1159/000489571 (2019).

    • Article
    • Google Scholar
  • 47.

    He, J. et al. Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. Microb. Ecol. 75, 543–554, https://doi.org/10.1007/s00248-017-1056-1 (2018).

    • Article
    • Google Scholar
  • 48.

    Ling, Z. et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb. Ecol. 60, 677–690, https://doi.org/10.1007/s00248-010-9712-8 (2010).

  • 49.

    Xu, L. et al. Dynamic Alterations in Salivary Microbiota Related to Dental Caries and Age in Preschool Children With Deciduous Dentition: A 2-Year Follow-Up Study. Front. Physiol. 9, 342, https://doi.org/10.3389/fphys.2018.00342 (2018).

  • 50.

    Simón-Soro, A. & Mira, A. Solving the etiology of dental caries. Trends Microbiol. 23, 76–82, https://doi.org/10.1016/j.tim.2014.10.010 (2015).

  • 51.

    Fath, B. D., Scharler, U. M., Ulanowicz, R. E. & Hannon, B. Ecological network analysis: network construction. Ecol. Modell. 208, 49–55, https://doi.org/10.1016/j.ecolmodel.2007.04.029 (2007).

    • Article
    • Google Scholar
  • 52.

    Zhou, J. et al. Functional Molecular Ecological Networks. mBio. 1; https://doi.org/10.1128/mBio.00169-10 (2010).

  • 53.

    Johansson, I., Witkowska, E., Kaveh, B., Lif Holgerson, P. & Tanner, A. C. R. The Microbiome in Populations with a Low and High Prevalence of Caries. J. Dent. Res. 95, 80–86, https://doi.org/10.1177/0022034515609554 (2015).

  • 54.

    Li, Y. et al. Oral microbial community typing of caries and pigment in primary dentition. BMC Genomics. 17, 558, https://doi.org/10.1186/s12864-016-2891-z (2016).

  • 55.

    Costalonga, M. & Herzberg, M. C. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol. Lett. 162, 22–38, https://doi.org/10.1016/j.imlet.2014.08.017 (2014).

  • 56.

    Ellen, R. P., Banting, D. W. & Fillery, E. D. Longitudinal microbiological investigation of a hospitalized population of older adults with a high root surface caries risk. J. Dent. Res. 64, 1377–1381, https://doi.org/10.1177/00220345850640121001 (1985).

  • 57.

    Loesche, W. J., Eklund, S., Earnest, R. & Burt, B. Longitudinal investigation of bacteriology of human fissure decay: epidemiological studies in molars shortly after eruption. Infect. Immun. 46, 765–772 (1984).

  • 58.

    Mikx, F. H. M., van der Hoeven, J. S., König, K. G., Plasschaert, A. J. M. & Guggenheim, B. Establishment of Defined Microbial Ecosystems in Germ-Free Rats. Caries Res. 6, 211–223, https://doi.org/10.1159/000259801 (1972).

  • 59.

    Association, G. AotW. M. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent. 81, 14 (2014).

    • Google Scholar
  • 60.

    van Loveren, C., Buijs, J. F. & ten Cate, J. M. The effect of triclosan toothpaste on enamel demineralization in a bacterial demineralization model. J. Antimicrob. Chemother. 45, 153–158, https://doi.org/10.1093/jac/45.2.153 (2000).

    • Article
    • Google Scholar
  • 61.

    Ahn, S. J., Lemos, J. A. & Burne, R. A. Role of HtrA in growth and competence of Streptococcus mutans UA159. J. Bacteriol. 187, 3028–3038, https://doi.org/10.1128/JB.187.9.3028-3038.2005 (2005).

  • 62.

    Tsang, P., Merritt, J., Shi, W. & Qi, F. IrvA-dependent and IrvA-independent pathways for mutacin gene regulation in Streptococcus mutans. FEMS Microbiol. Lett. 261, 231–234, https://doi.org/10.1111/j.1574-6968.2006.00351.x (2006).

  • 63.

    Zhou, Y. et al. Differential Utilization of Basic Proline-Rich Glycoproteins during Growth of Oral Bacteria in Saliva. Appl. Environ. Microbiol. 82, 5249–5258, https://doi.org/10.1128/AEM.01111-16 (2016).

  • 64.

    Price, R. R., Viscount, H. B., Stanley, M. C. & Leung, K. P. Targeted profiling of oral bacteria in human saliva andin vitrobiofilms with quantitative real-time PCR. Biofouling. 23, 203–213, https://doi.org/10.1080/08927010701251169 (2007).


  • Source: Ecology - nature.com

    Hidden treasure of the Gobi: understanding how water limits range use of khulan in the Mongolian Gobi

    The detection of honey bee (Apis mellifera)-associated viruses in ants