
IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).
Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
Anderegg, W. R. L. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).
Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).
Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).
Carnicer, J. et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 25, 2825–2840 (2019).
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).
Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Change Biol. 24, 3546–3559 (2018).
García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).
Tei, S. et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob. Change Biol. 23, 5179–5188 (2017).
Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).
Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, GB3027 (2010).
Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).
Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Liu, Y. et al. Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proc. Natl Acad. Sci. USA 114, 9918–9923 (2017).
Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).
van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).
Warren, J. M., Norby, R. J., Wullschleger, S. D. & Oren, R. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
Ogasa, M., Miki, N. H., Murakami, Y. & Yoshikawa, K. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol. 33, 335–344 (2013).
Martin-StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017).
Matheny, A. M., Mirfenderesgi, G. & Bohrer, G. Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Divers. 39, 1–12 (2017).
Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).
Babst, F. et al. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176, 307–322 (2014).
Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).
Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).
Johnson, D. M., Mcculloh, K. A., Woodruff, D. R. & Meinzer, F. C. Plant science hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).
Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).
Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).
D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553 (2017).
Meinzer, F. C. et al. Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc. Natl Acad. Sci. USA 105, 12069–12074 (2008).
Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).
Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. USA 111, 14489–14493 (2014).
Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015).
Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).
Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).
Yin, J. & Bauerle, T. L. A global analysis of plant recovery performance from water stress. Oikos 126, 1377–1388 (2017).
Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).
Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).
Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
Sohn, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: a meta-analysis. For. Ecol. Manage. 380, 261–273 (2016).
Trouvé, R., Bontemps, J. D., Collet, C., Seynave, I. & Lebourgeois, F. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees 31, 517–529 (2017).
Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).
Drake, B. L., Hanson, D. T., Lowrey, T. K. & Sharp, Z. D. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest. Glob. Change Biol. 23, 782–792 (2017).
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).
Niinemets, Ü., Flexas, J. & Peñuelas, J. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol. Evol. 26, 136–142 (2011).
Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytol 205, 518–525 (2015).
Voelker, S. L. et al. A dynamic leaf gas‐exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).
Domec, J.-C. et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant Cell Environ. 32, 1500–1512 (2009).
Domec, J.-C., Schafer, K., Oren, R., Kim, H. S. & McCarthy, H. R. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiol. 30, 1001–1015 (2010).
Domec, J. C., Smith, D. D. & McCulloh, K. A. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole‐plant water use efficiency and resistance to drought. Plant Cell Environ. 40, 921–937 (2017).
McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321 (2013).
Mitchell, P. J., O’Grady, A. P., Hayes, K. R. & Pinkard, E. A. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol. Evol. 4, 1088–1101 (2014).
Choat, B. et al. Triggers of tree mortality under drought drought and forest mortality. Nature 558, 531–539 (2018).
Andreu-Hayles, L. et al. Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob. Change Biol. 17, 2095–2112 (2011).
Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W. & Zimmermann, N. E. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).
Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).
Gao, S. et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 24, 5380–5390 (2018).
Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–83 (2007).
Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).
Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).
Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).
Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Science & Business Media, 2013).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).
Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded harmonized world soil database v1.2. http://daac.ornl.gov (Oak Ridge National Laboratory Distributed Active Archive Center, 2014).
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).
Zanne, A. E. et al. Global wood density database. Dryad https://doi.org/10.5061/dryad.234/1 (2009).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. R version 2.1.5. https://cran.r-project.org/web/packages/gbm/index.html (2007).
Fang, O. & Zhang, Q. B. Tree resilience to drought increases in the Tibetan Plateau. Glob. Change Biol. 25, 245–253 (2019).
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Brienen, R. J. W. et al. Plot Data from: Long-term Decline of the Amazon Carbon Sink https://doi.org/10.5521/ForestPlots.net/2014_4 (Forest Plots, 2014).
Source: Ecology - nature.com