in

The balance of interaction types determines the assembly and stability of ecological communities

  • 1.

    Elton, C. S. The Ecology of Invasions by Animals and Plants (Chapman & Hall, 1958).

  • 2.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    • Article
    • Google Scholar
  • 3.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

  • 4.

    May, R. M. C. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton Univ. Press, 2001).

  • 5.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

  • 6.

    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

    • Article
    • Google Scholar
  • 7.

    Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    • Article
    • Google Scholar
  • 8.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

  • 9.

    Landi, P., Minoarivelo, H. O., Brannstrom, A., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    • Article
    • Google Scholar
  • 10.

    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).

  • 11.

    Mougi, A. & Kondoh, M. Stability of competition–antagonism–mutualism hybrid community and the role of community network structure. J. Theor. Biol. 360, 54–58 (2014).

  • 12.

    Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 29929 (2016).

  • 13.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

  • 14.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

  • 15.

    Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

  • 16.

    Suweis, S., Grilli, J. & Maritan, A. Disentangling the effect of hybrid interactions and of the constant effort hypothesis on ecological community stability. Oikos 123, 525–532 (2014).

    • Article
    • Google Scholar
  • 17.

    Melian, C. J., Bascompte, J., Jordano, P. & Krivan, V. Diversity in a complex ecological network with two interaction types. Oikos 118, 122–130 (2009).

    • Article
    • Google Scholar
  • 18.

    Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011).

  • 19.

    May, R. M. in Theoretical Ecology: Principles and Applications (ed. May, R. M.) 78–104 (Blackwell Scientific, 1976).

  • 20.

    Holland, J. N. in Mutualism (ed. Bronstein, J. L.) 133–158 (Oxford Univ. Press, 2015).

  • 21.

    Holland, J. N., Okuyama, T. & De Angelis, D. L. Comment on “Asymmetric coevolutionary networks facilitate biodiversity maintenance”. Science 313, 1887 (2006).

  • 22.

    Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).

  • 23.

    Holland, J. N., DeAngelis, D. L. & Bronstein, J. L. Population dynamics and mutualism: functional responses of benefits and costs. Am. Nat. 159, 231–244 (2002).

  • 24.

    Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

  • 25.

    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

  • 26.

    Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 (2009).

  • 27.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

  • 28.

    Kawatsu, K. & Kondoh, M. Density-dependent interspecific interactions and the complexity–stability relationship. Proc. R. Soc. B 285, 20180698 (2018).

  • 29.

    Holling, C. S. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).

    • Article
    • Google Scholar
  • 30.

    Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer–food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).

  • 31.

    McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

  • 32.

    Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl Acad. Sci. USA 87, 9610–9614 (1990).

  • 33.

    Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).

    • Article
    • Google Scholar
  • 34.

    Maynard, D. S., Servan, C. A. & Allesina, S. Network spandrels reflect ecological assembly. Ecol. Lett. 21, 324–334 (2018).

  • 35.

    Tokita, K. & Yasutomi, A. Emergence of a complex and stable network in a model ecosystem with extinction and mutation. Theor. Popul. Biol. 63, 131–146 (2003).

  • 36.

    Kokkoris, G. D., Troumbis, A. Y. & Lawton, J. H. Patterns of species interaction strength in assembled theoretical competition communities. Ecol. Lett. 2, 70–74 (1999).

    • Article
    • Google Scholar
  • 37.

    Hui, C. et al. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18, 971–983 (2016).

    • Article
    • Google Scholar
  • 38.

    Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 32, 121–131 (2018).

    • Google Scholar
  • 39.

    Fridley, J. D. et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88, 3–17 (2007).

  • 40.

    Roberts, A. The stability of a feasible random ecosystem. Nature 251, 607–608 (1974).

    • Article
    • Google Scholar
  • 41.

    Stone, L. The Google matrix controls the stability of structured ecological and biological networks. Nat. Commun. 7, 12857 (2016).

  • 42.

    Stone, L. The feasibility and stability of large complex biological networks: a random matrix approach. Sci. Rep. 8, 8246 (2018).

  • 43.

    Barabás, G., Michalska-Smith, M. J. & Allesina, S. Self-regulation and the stability of large ecological networks. Nat. Ecol. Evol. 1, 1870–1875 (2017).

  • 44.

    Afkhami, M. E., Rudgers, J. A. & Stachowicz, J. J. Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology 95, 833–844 (2014).

  • 45.

    Burrows, R. L. & Pfleger, F. L. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can. J. Bot. 80, 120–130 (2002).

    • Article
    • Google Scholar
  • 46.

    Gustafson, D. J. & Casper, B. B. Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities: experimentally manipulating co-occurring glomus species. Plant Ecol. 183, 257–263 (2006).

    • Article
    • Google Scholar
  • 47.

    Palmer, T. M. et al. Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc. Natl Acad. Sci. USA 107, 17234–17239 (2010).

  • 48.

    Stachowicz, J. J. & Whitlatch, R. B. Multiple mutualists provide complementary benefits to their seaweed host. Ecology 86, 2418–2427 (2005).

    • Article
    • Google Scholar
  • 49.

    McKeon, C. S., Stier, A. C., McIlroy, S. E. & Bolker, B. M. Multiple defender effects: synergistic coral defense by mutualist crustaceans. Oecologia 169, 1095–1103 (2012).

  • 50.

    Tu, C., Suweis, S., Grilli, J., Formentin, M. & Maritan, A. Reconciling cooperation, biodiversity and stability in complex ecological communities. Sci. Rep. 9, 5580 (2019).

  • 51.

    Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    • Article
    • Google Scholar
  • 52.

    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).

  • 53.

    Butler, S. & O’Dwyer, J. P. Cooperation and stability for complex systems in resource limited environments. Preprint at https://doi.org/10.1101/514018 (2020).

  • 54.

    Momeni, B., Xie, L. & Shou, W. Lotka–Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. eLife 6, e25051 (2017).

  • 55.

    Cornell, H. V. & Lawton, J. H. Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective. J. Anim. Ecol. 61, 1–12 (1992).

    • Article
    • Google Scholar
  • 56.

    Alroy, J. Limits to species richness in terrestrial communities. Ecol. Lett. 21, 1781–1789 (2018).

  • 57.

    Cornell, H. V. Unsaturation and regional influences on species richness in ecological communities: a review of the evidence. Ecoscience 6, 303–315 (1999).

    • Article
    • Google Scholar
  • 58.

    Mouquet, N., Munguia, P., Kneitel, J. M. & Miller, T. E. Community assembly time and the relationship between local and regional species richness. Oikos 103, 618–626 (2003).

    • Article
    • Google Scholar
  • 59.

    Loreau, M. Are communities saturated? On the relationship between α, β and γ diversity. Ecol. Lett. 3, 73–76 (2000).

    • Article
    • Google Scholar
  • 60.

    Valone, T. J. & Hoffman, C. D. Effects of regional pool size on local diversity in small-scale annual plant communities. Ecol. Lett. 5, 477–480 (2002).

    • Article
    • Google Scholar
  • 61.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography Vol. 1 (Princeton Univ. Press, 1967).

  • 62.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    • Article
    • Google Scholar
  • 63.

    Hairer, E., Norsett, S. P., & Wanner, G. Solving Ordinary Differential Equations Vol. 1 (Springer, 1991).

  • 64.

    Harper, M. et al. python-ternary: ternary plots in Python. Zenodo 12, 17 (2015); https://doi.org/10.5281/zenodo.34938


  • Source: Ecology - nature.com

    Mars 2020: The search for ancient life is on

    A material’s insulating properties can be tuned at will