in

The breeding strategy of female jumbo squid Dosidicus gigas: energy acquisition and allocation

  • 1.

    Stearns, S. C. The Evolution of Life Histories. Vol. VII 249 (Oxford University Press, 1992).

  • 2.

    Rocha, F., Guerra, Á. & González, Á. F. A review of reproductive strategies in cephalopods. Biol. Rev. 76, 291–304, https://doi.org/10.1017/S1464793101005681 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Boyle, P. & Rodhouse, P. Cephalopods: ecology and fisheries. 464 (Wiley-Blackwell, 2005).

  • 4.

    Harman, R. F. et al. Evidence for multiple spawning in the tropical oceanic squid Sthenoteuthis oualaniensis (Teuthoidea: Ommastrephidae). Mar. Biol. 101, 513–519, https://doi.org/10.1007/BF00541653 (1989).

    Article  Google Scholar 

  • 5.

    McGrath, B. & Jackson, G. Egg production in the arrow squid Nototodarus gouldi (Cephalopoda: Ommastrephidae), fast and furious or slow and steady? Mar. Biol. 141, 699–706, https://doi.org/10.1007/s00227-002-0864-z (2002).

    Article  Google Scholar 

  • 6.

    Jackson, G. D., Semmens, J. M., Phillips, K. L. & Jackson, C. H. Reproduction in the deepwater squid Moroteuthis ingens, what does it cost? Mar. Biol. 145, 905–916, https://doi.org/10.1007/s00227-004-1375-x (2004).

    Article  Google Scholar 

  • 7.

    Moltschaniwskyj, N. A. & Carter, C. G. The adaptive response of protein turnover to the energetic demands of reproduction in a cephalopod. Physiological Biochemical Zool. 86, 119–126, https://doi.org/10.1086/667799 (2013).

    CAS  Article  Google Scholar 

  • 8.

    McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish. Fish. 16, 23–57, https://doi.org/10.1111/faf.12043 (2015).

    Article  Google Scholar 

  • 9.

    Boggs, C. L. Dynamics of reproductive allocation from juvenile and adult feeding: Radiotracer studies. Ecology 78, 192–202, https://doi.org/10.1890/0012-9658(1997)078[0192:DORAFJ]2.0.CO;2 (1997).

    Article  Google Scholar 

  • 10.

    Pecl, G. T. & Moltschaniwskyj, N. A. Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season. ICES J. Mar. Sci. 63, 995–1004, https://doi.org/10.1016/j.icesjms.2006.04.007 (2006).

    Article  Google Scholar 

  • 11.

    Kuipers, M. R., Pecl, G. T. & Moltschaniwskyj, N. A. Batch or trickle: understanding the multiple spawning strategy of southern calamary, Sepioteuthis australis (Mollusca: Cephalopoda). Mar. Freshw. Res. 59, 987–997, https://doi.org/10.1071/MF07200 (2008).

    Article  Google Scholar 

  • 12.

    Nigmatullin, C. M., Nesis, K. & Arkhipkin, A. A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish. Res. 54, 9–19 (2001).

    Article  Google Scholar 

  • 13.

    FAO. The State of World Fisheries and Aquaculture 2016. Contributing to food security and nutrition for all. 200 (FAO, 2016).

  • 14.

    Rosas-Luis, R. et al. Importance of jumbo squid Dosidicus gigas (Orbigny, 1835) in the pelagic ecosystem of the central Gulf of California. Ecol. Model. 218, 149–161, https://doi.org/10.1016/j.ecolmodel.2008.06.036 (2008).

    Article  Google Scholar 

  • 15.

    Field, J. C. et al. Foraging ecology and movement patterns of jumbo squid (Dosidicus gigas) in the California Current System. Deep-Sea Res. II 95, 37–51, https://doi.org/10.1016/j.dsr2.2012.09.006 (2013).

    Article  Google Scholar 

  • 16.

    Rosa, R. et al. In Advances in Squid Biology, Ecology and Fisheries Part II – Oegopsid squids (eds Rui Rosa, Graham Pierce, & Ron O’Dor) Ch. VI, 169–206 (Nova Science Publishers, 2013).

  • 17.

    Velázquez, C. Q., Herrera, A. H., Velázquez-Abunader, I. & Valencia, N. F. Maturation, Age, and Growth Estimation of the Jumbo Squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in the Central Region of the Gulf of California. J. Shellfish. Res. 32, 351–359, https://doi.org/10.2983/035.032.0214 (2013).

    Article  Google Scholar 

  • 18.

    Hu, G. et al. Age, growth and population structure of jumbo flying squid Dosidicus gigas off the Peruvian Exclusive Economic Zone based on beak microstructure. Fish. Sci. 82, 597–604, https://doi.org/10.1007/s12562-016-0991-y (2016).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Nigmatullin, C. M. & Markaida, U. Oocyte development, fecundity and spawning strategy of large sized jumbo squid Dosidicus gigas (Oegopsida: Ommastrephinae). J. Mar. Biol. Assoc. UK 89, 789–801, https://doi.org/10.1017/S0025315408002853 (2009).

    Article  Google Scholar 

  • 20.

    Hernández-Muñoz, A. T., Rodríguez-Jaramillo, C., Mejía-Rebollo, A. & Salinas-Zavala, C. A. Reproductive strategy in jumbo squid Dosidicus gigas (D’Orbigny, 1835): A new perspective. Fish. Res. 173, 145–150, https://doi.org/10.1016/j.fishres.2015.09.005 (2016).

    Article  Google Scholar 

  • 21.

    Pérez-Palafox, X. A. et al. Evidence of Iteroparity in Jumbo Squid Dosidicus gigas in the Gulf of California, Mexico. J. Shellfish. Res. 38, 149–162, https://doi.org/10.2983/035.038.0114 (2019).

    Article  Google Scholar 

  • 22.

    Argüelles, J. & Tafur, R. New insights on the biology of the jumbo squid Dosidicus gigas in the Northern Humboldt Current System: Size at maturity, somatic and reproductive investment. Fish. Res. 106, 185–192, https://doi.org/10.1016/j.fishres.2010.06.005 (2010).

    Article  Google Scholar 

  • 23.

    Seibel, B. A. Environmental Physiology of the Jumbo Squid, Dosidicus gigas (d’Orbigny, 1835) (Cephalopoda: Ommastrephidae): Implications for Changing Climate. Am. Malacological Bull. 33, 161–173, https://doi.org/10.4003/006.033.0113 (2015).

    Article  Google Scholar 

  • 24.

    Keyl, F., Argüelles, J. & Tafur, R. Interannual variability in size structure, age, and growth of jumbo squid (Dosidicus gigas) assessed by modal progression analysis. ICES J. Mar. Sci. 68, 507–518, https://doi.org/10.1093/icesjms/fsq167 (2011).

    Article  Google Scholar 

  • 25.

    Ibáñez, C. M. et al. Population dynamics of the squids Dosidicus gigas (Oegopsida: Ommastrephidae) and Doryteuthis gahi (Myopsida: Loliginidae) in northern Peru. Fish Res 173, Part 2, 151–158, https://doi.org/10.1016/j.fishres.2015.06.014 (2016).

  • 26.

    Han, F., Chen, X., Lin, D. & Xuan, S. The body condition and reproductive investment of Dosidicus gigas in the equatorial waters of eastern Pacific Ocean. Journal of Fisheries of China, 10.11964/jfc. 20180611323 (2019).

  • 27.

    Graeve, M., Kattner, G., Wiencke, C. & Karsten, U. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser. 231, 67–74, https://doi.org/10.3354/meps231067 (2002).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Dalsgaard, J. et al. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340, https://doi.org/10.1016/S0065-2881(03)46005-7 (2003).

    Article  PubMed  Google Scholar 

  • 29.

    Sargent, J. R., Tocher, D. R. & Bell, J. G. The Lipids in Fish Nutrition (Third Edition) (ed. Halver, J. E.) 181–257 (Academic Press, 2003).

  • 30.

    Lourenço, S. et al. Feeding Relationship between Octopus vulgaris (Cuvier, 1797) Early Life-Cycle Stages and Their Prey in the Western Iberian Upwelling System: Correlation of Reciprocal Lipid and Fatty Acid Contents. Front. Physiol. 8, 1–11, https://doi.org/10.3389/fphys.2017.00467 (2017).

    Article  Google Scholar 

  • 31.

    Roo, J. et al. Effects of supplementation of decapod zoea to Artemia basal diet on fatty acid composition and digestive gland histology in common octopus (Octopus vulgaris) paralarvae. Aquaculture Res. 48, 633–645, https://doi.org/10.1111/are.12910 (2017).

    CAS  Article  Google Scholar 

  • 32.

    Pond, D. W., Bell, M. V., Harris, R. P. & Sargent, J. R. Microplanktonic Polyunsaturated Fatty Acid Markers: a Mesocosm Trial. Estuar. Coast. Shelf. Sci. 46, 61–67, https://doi.org/10.1006/ecss.1998.0334 (1998).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Sargent, J. R. et al. Requirement criteria for essential fatty acids. J. Appl. Ichthyology 11, 183–198, https://doi.org/10.1111/j.1439-0426.1995.tb00018.x (1995).

    CAS  Article  Google Scholar 

  • 34.

    Ackman, R. G. In Lipids in Freshwater Ecosystems (eds Arts, M. T. & Wainman, B. C.) 263–298 (Springer New York, 1999).

  • 35.

    Li, Y.-Y. et al. Effects of n-3 HUFA content in broodstock diet on spawning performance and fatty acid composition of eggs and larvae in Plectorhynchus cinctus. Aquaculture 245, 263–272, https://doi.org/10.1016/j.aquaculture.2004.12.016 (2005).

    CAS  Article  Google Scholar 

  • 36.

    Iverson, S. J. Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination in Lipids in Aquatic Ecosystems (eds Martin Kainz, Michael T. Brett, & Michael T. Arts) 281–308 (Springer New York, 2009).

  • 37.

    Semmens, J. M. Changes in the digestive gland of the loliginid squid Sepioteuthis lessoniana (Lesson 1830) associated with feeding. J. Exp. Mar. Bio Ecol. 274, 19–39, https://doi.org/10.1016/S0022-0981(02)00165-X (2002).

    Article  Google Scholar 

  • 38.

    Swift, K., Johnston, D. & Moltschaniwskyj, N. The digestive gland of the Southern Dumpling Squid (Euprymna tasmanica): structure and function. J. Exp. Mar. Bio Ecol. 315, 177–186, https://doi.org/10.1016/j.jembe.2004.09.017 (2005).

    Article  Google Scholar 

  • 39.

    Stowasser, G. et al. Experimental study on the effect of diet on fatty acid and stable isotope profiles of the squid Lolliguncula brevis. J. Exp. Mar. Bio Ecol. 333, 97–114, https://doi.org/10.1016/j.jembe.2005.12.008 (2006).

    CAS  Article  Google Scholar 

  • 40.

    Fluckiger, M. et al. An experimental study of the effect of diet on the fatty acid profiles of the European Cuttlefish (Sepia officinalis). Mar. Biol. 154, 363–372, https://doi.org/10.1007/s00227-008-0932-0 (2008).

    CAS  Article  Google Scholar 

  • 41.

    García, S. et al. Growth, partial energy balance, mantle and digestive gland lipid composition of Octopus vulgaris (Cuvier, 1797) fed with two artificial diets. Aquaculture Nutr. 17, e174–e187, https://doi.org/10.1111/j.1365-2095.2009.00746.x (2011).

    Article  Google Scholar 

  • 42.

    Lin, D., Han, F., Xuan, S. & Chen, X. Fatty acid composition and the evidence for mixed income–capital breeding in female Argentinean short-fin squid Illex argentinus. Mar. Biol. 166, 90, https://doi.org/10.1007/s00227-019-3534-0 (2019).

    Article  Google Scholar 

  • 43.

    Meyer, L. et al. Abiotic and biotic drivers of fatty acid tracers in ecology: A global analysis of chondrichthyan profiles. Funct. Ecol. 33(33), 1243–1255, https://doi.org/10.1111/1365-2435.13328 (2019).

    Article  Google Scholar 

  • 44.

    Reis, D. B. et al. An insight on Octopus vulgaris paralarvae lipid requirements under rearing conditions. Aquaculture Nutr. 21, 797–806, https://doi.org/10.1111/anu.12205 (2015).

    CAS  Article  Google Scholar 

  • 45.

    Garrido, D. et al. Fatty acid composition and age estimation of wild Octopus vulgaris paralarvae. Aquaculture 464, 564–569, https://doi.org/10.1016/j.aquaculture.2016.07.034 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Saito, H., Sakai, M. & Wakabayashi, T. Characteristics of the lipid and fatty acid compositions of the Humboldt squid, Dosidicus gigas: The trophic relationship between the squid and its prey. Eur. J. Lipid Sci. Technol. 116, 360–366, https://doi.org/10.1002/ejlt.201300230 (2014).

    CAS  Article  Google Scholar 

  • 47.

    Gong, Y. et al. A comparative analysis of fatty acid profiles in muscle of Dosidicus gigas from different harvest locations in the eastern Pacific Ocean. Progress in Fishery. Sciences 39, 147–154, https://doi.org/10.19663/j.issn2095-9869.20171208001 (2018).

    Article  Google Scholar 

  • 48.

    Salman, Y., Salman, A. & Ozkizilcik, S. The fatty acid profile of the marine cephalopod Loligo vulgaris. Israeli Journal of Aquaculture-Bamidgeh 59, 133-136, http://hdl.handle.net/10524/19226 (2007).

  • 49.

    Pethybridge, H. R., Nichols, P. D., Virtue, P. & Jackson, G. D. The foraging ecology of an oceanic squid, Todarodes filippovae: The use of signature lipid profiling to monitor ecosystem change. Deep-Sea Res. II 95, 119–128, https://doi.org/10.1016/j.dsr2.2012.07.025 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Navarro, J. C. & Villanueva, R. The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219, 613–631, https://doi.org/10.1016/S0044-8486(02)00311-3 (2003).

    CAS  Article  Google Scholar 

  • 51.

    Tocher, D. R. M. and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 11, 107–184, https://doi.org/10.1080/713610925 (2003).

    CAS  Article  Google Scholar 

  • 52.

    Ferreira, A. et al. The use of alternative diets to culture juvenile cuttlefish, Sepia officinalis: effects on growth and lipid composition. Aquaculture Nutr. 16, 262–275, https://doi.org/10.1111/j.1365-2095.2009.00661.x (2010).

    CAS  Article  Google Scholar 

  • 53.

    García-Garrido, S. et al. Lipid composition of the mantle and digestive gland of Octopus vulgaris juveniles (Cuvier, 1797) exposed to prolonged starvation. Aquacult Int. 18, 1223–1241, https://doi.org/10.1007/s10499-010-9335-6 (2010).

    CAS  Article  Google Scholar 

  • 54.

    Sargent, J. et al. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191–199, https://doi.org/10.1016/S0044-8486(99)00083-6 (1999).

    CAS  Article  Google Scholar 

  • 55.

    Brown, J. A. The adaptive significance of behavioural ontogeny in some. centrarchid fishes. Env. Biol. Fish. 13, 25–34, https://doi.org/10.1007/bf00004853 (1985).

    Article  Google Scholar 

  • 56.

    Parry, M. Trophic variation with length in two ommastrephid squids, Ommastrephes bartramii and Sthenoteuthis oualaniensis. Mar. Biol. 153, 249–256, https://doi.org/10.1007/s00227-007-0800-3 (2008).

    Article  Google Scholar 

  • 57.

    Paul, M. et al. Trophic Ecology of Eight Sympatric Nemipterid Fishes (Nemipteridae) in the Lower Part of the South China Sea. Turkish J. Fish. Aquat. Sci. 18, 277–287, https://doi.org/10.4194/1303-2712-v18_2_07 (2018).

    Article  Google Scholar 

  • 58.

    Ruiz-Cooley, R. I., Markaida, U., Gendron, D. & Aguíñiga, S. Stable isotopes in jumbo squid (Dosidicus gigas) beaks to estimate its trophic position: comparison between stomach contents and stable isotopes. J. Mar. Biol. Assoc. UK 86, 437–445, https://doi.org/10.1017/S0025315406013324 (2006).

    Article  Google Scholar 

  • 59.

    Ruiz-Cooley, R. I., Ballance, L. T. & McCarthy, M. D. Range Expansion of the Jumbo Squid in the NE Pacific: δ15N Decrypts Multiple Origins, Migration and Habitat Use. PLoS ONE 8, e59651, https://doi.org/10.1371/journal.pone.0059651 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Gong, Y. et al. Sexual dimorphism in feeding apparatus and niche partitioning in juvenile jumbo squid Dosidicus gigas. Mar. Ecol. Prog. Ser. 607, 99–112, https://doi.org/10.3354/meps12768 (2018).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Sokolova, I. M. et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15, https://doi.org/10.1016/j.marenvres.2012.04.003 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Boratyński, Z. Energetic constraints on mammalian home range size. Functional Ecology n/a, 1–7, https://doi.org/10.1111/1365-2435.13480 (2019).

  • 63.

    Rosas-Luis, R., Sánchez, P., Portela, J. M. & del Rio, J. L. Feeding habits and trophic interactions of Doryteuthis gahi, Illex argentinus and Onykia ingens in the marine ecosystem off the Patagonian Shelf. Fish. Res. 152, 37–44, https://doi.org/10.1016/j.fishres.2013.11.004 (2014).

    Article  Google Scholar 

  • 64.

    Rosas-Luis, R., Navarro, J., Martínez-Baena, F. & Sánchez, P. Differences in the trophic niche along the gladius of the squids Illex argentinus and Doryteuthis gahi based on their isotopic values. Regional Stud. Mar. Sci. 11, 17–22, https://doi.org/10.1016/j.rsma.2017.02.003 (2017).

    Article  Google Scholar 

  • 65.

    Clarke, A., Rodhouse, P. G. & Gore, D. J. Biochemical Composition in Relation to the Energetics of Growth and Sexual Maturation in the Ommastrephid Squid Illex argentinus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 344, 201–212, https://doi.org/10.1098/rstb.1994.0061 (1994).

    ADS  Article  Google Scholar 

  • 66.

    Rosa, R., Costa, P. R. & Nunes, M. L. Effect of sexual maturation on the tissue biochemical composition of Octopus vulgaris and O. defilippi (Mollusca: Cephalopoda). Mar. Biol. 145, 563–574, https://doi.org/10.1007/s00227-004-1340-8 (2004).

    CAS  Article  Google Scholar 

  • 67.

    Arkhipkin, A. Reproductive system structure, development and function in cephalopods with a new general scale for maturity stages. J. Northwest. Atl. Fish. Sci. 12, 63–74 (1992).

    Article  Google Scholar 

  • 68.

    Arkhipkin, A. & Laptikhovsky, V. Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda, Ommastrephidae) in the Southwest Atlantic. Aquat. Living Resour. 7, 221–232 (1994).

    Article  Google Scholar 

  • 69.

    ICES. Report of the Workshop on Sexual Maturity Staging of Cephalopods, 8-11 November 2010, Livorno, Italy. ICES CM 2010/ACOM:49. 97 (ICES 2010).

  • 70.

    Villegas, P. G. life cycle and fishery biology of Loligo gahi (d’Orbigny, 1835) off the Peruvian coast. Fish. Res. 54, 123–131, https://doi.org/10.1016/S0165-7836(01)00376-9 (2001).

    Article  Google Scholar 

  • 71.

    Reis, D. B. et al. In vivo metabolism of unsaturated fatty acids in Sepia officinalis hatchlings. Aquaculture 450, 67–73, https://doi.org/10.1016/j.aquaculture.2015.07.012 (2016).

    CAS  Article  Google Scholar 

  • 72.

    Lin, D., Chen, X., Wei, Y. & Chen, Y. The energy accumulation of somatic tissue and reproductive organs in post-recruit female Illex argentinus and the relationship with sea surface oceanography. Fish. Res. 185, 102–114, https://doi.org/10.1016/j.fishres.2016.09.023 (2017).

    Article  Google Scholar 

  • 73.

    GAQSIQ. Determination of total fat, saturated fat, and unsaturated fat in foods: Hydrolytic extraction-Gas chromatography (GB/T 22223-2008). 16 (Standards Press of China, 2008).

  • 74.

    Parrish, C. C. et al. Lipid and Phenolic Biomarkers in Marine Ecosystems: Analysis and Applications in Marine Chemistry (ed.Wangersky, P. J.) 193–223 (Springer, 2000).

  • 75.

    Zar, J. H. Biostatistical Analysis, fourth Edition. 960 (Prentice Hall, 1999).

  • 76.

    Bromaghin, J. F. qfasar: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162, https://doi.org/10.1111/2041-210X.12740 (2017).

    Article  Google Scholar 

  • 77.

    Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data. First edition. 672 (Springer-Verlag, 2007).

  • 78.

    R Core Team. R: A language and environment for statistical computing v. 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria, 2018).


  • Source: Ecology - nature.com

    Tiny sand grains trigger massive glacial surges

    Startup with MIT roots develops lightweight solar panels