Oleksyn, J., Modrzýnski, J., Tjoelker, M. G., Reich, P. B. & Karolewski, P. Growth and physiology of Picea abies populations from elevational transects: Common garden evidence for altitudinal ecotypes and cold adaptation. Funct. ecol. 12(4), 573–590 (1998).
Jansson, G. et al. Norway spruce (Picea abies (L.) H. Karst.) Pâques L. (ed.) forest tree breeding in Europe. Manag. Ecosyst. 25, 123–176 (2013).
Müller-Starck, G., Baradat, Ph. & Bergmann, F. Genetic variation within European tree species. New For. 6(1–4), 23–47 (1992).
Morgenstern, E. K. of tree ecotypes in Geographic Variation in Forest Trees: Genetic Basis and Application of Knowledge in Silviculture 109–115 (Vancouver, Amsterdam, 1996).
Androsiuk, P. et al. Genetic status of Norway spruce (Picea abies) breeding populations for northern Sweden. Silvae Genet. 62(1–6), 127–136 (2013).
Farjon, A. & Filer, D. Specific Adaptations in An atlas of the world’s conifers: An Analysis of Their Distribution, Biogeography, Diversity and Conservation Status (Springer, The Netherlands, 2013).
Chakraborty, D. et al. Selecting populations for non-analogous climate conditions using universal response functions: The case of Douglas-fir in central Europe. PLoS ONE 10(8), e0136357 (2015).
van der Maaten-Theunissen, M., Kahle, H. P., & van der Maaten, E. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Ann. Sci. 70(2), 185–193 (2013).
Trujillo-Moya, C. et al. Drought sensitivity of norway spruce at the species’ warmest fringe: Quantitative and molecular analysis reveals high genetic variation among and within provenances. G3 Genes Genom. Genet. g3, 300524 (2018).
Close, T. J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plantarum. 97(4), 795–803 (1996).
Campbell, S. A. & Close, T. J. Dehydrins: Genes, proteins, and associations with phenotypic traits. New Phytol. 137(1), 61–74 (1997).
Yakovlev, I. A. et al. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3), 459–472 (2008).
Eldhuset, T. D. et al. Drought affects tracheid structure, dehydrin expression, and above-and below ground growth in 5-year-old Norway spruce. Plant Soil 366(1–2), 305–320 (2013).
Hara, M. The multifunctionality of dehydrins: An overview. Plant Signal. Behav. 5(5), 503–508 (2010).
Graether, S. P. & Boddington, K. F. Disorder and function: A review of the dehydrin protein family. Front. Plant Sci. 5, 576 (2014).
Hanin, M. et al. Plant dehydrins and stress tolerance: Versatile proteins for complex mechanisms. Plant Signal. Behav. 6(10), 1503–1509 (2011).
Kosová, K. et al. Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J. Plant Physiol. 165(11), 1142–1151 (2008).
Yamasaki, Y., Koehler, G., Blacklock, B. J. & Randall, S. K. Dehydrin expression in soybean. Plant Physiol. Biochem. 70, 213–220 (2013).
Liu, H. et al. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Sci. 231, 198–211 (2015).
Velasco-Conde, T., Yakovlev, I., Majada, J. P., Aranda, I. & Johnsen, Ø. Dehydrins in maritime pine (Pinus pinaster) and their expression related to drought stress response. Tree Genet. Genomes. 8(5), 957–973 (2012).
Stival Sena, J., Giguère, I., Rigault, P., Bousquet, J. & Mackay, J. Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiol. 38(3), 442–456 (2018).
Šindelář J. of experimental plot in Klonové Archivy Smrku Ztepilého Picea abies Karst. na PLO Zbraslav-Strnady—Polesí Jíloviště (VÚLHM, 1975).
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5), e19379 (2011).
Yakovlev, I. A., Fossdal, C. G., Johnsen, O., Junttila, O. & Skrøppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes. 2(1), 39–52 (2006).
Kjellsen, T. D., Yakovlev, I. A., Fossdal, C. G. & Strimbeck, G. R. Dehydrin accumulation and extreme low-temperature tolerance in Siberian spruce (Picea obovata). Tree Physiol. 33(12), 1354–1366 (2013).
R Core Team. R. A language and environment for statistical computing. Preprint at https://www.R-project.org/ (2018).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).
Jombart, T. & Ahmed, I. New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).
Gömöry, D., Foffová, E., Kmeť, J., Longauer, R. & Romšáková, I. Norway spruce (Picea abies [L.] Karst.) provenance variation in autumn cold hardiness: Adaptation or acclimation?. Acta Biol. Cracov. Bot. 52(2), 42–49 (2010).
Cortleven, A. et al. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018 (2019).
Szabados, L. & Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 15, 89–97 (2010).
Zulfiqar, F., Akram, N. A. & Ashraf, M. Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251, 3 (2020).
Ciereszko, I. Regulatory roles of sugars in plant growth and development. Acta Soc. Bot. Pol. 87(2), 66 (2018).
Rowland, L. J. & Arora, R. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126(2), 119–144 (1997).
Erez, A., Faust, M. & Line, M. J. Changes in water status in peach buds on induction, development and release from dormancy. Sci. Hortic. 73(2–3), 111–123 (1998).
Kalberer, S. R., Wisniewski, M. & Arora, R. Deacclimation and reacclimation of cold-hardy plants: Current understanding and emerging concepts. Plant Sci. 171(1), 3–16 (2006).
Welling, A., Moritz, T., Palva, E. T. & Junttila, O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 129(4), 1633–1641 (2002).
Welling, A. et al. Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J. Exp. Bot. 55(396), 507–516 (2004).
Karlson, D. T., Zeng, Y., Stirm, V. E., Joly, R. J. & Ashworth, E. N. Photoperiodic regulation of a 24-kD dehydrin-like protein in red-osier dogwood (Cornus sericea L.) in relation to freeze-tolerance. Plant Cell Physiol. 44(1), 25–34 (2003).
Carneros, E., Yakovlev, I., Viejo, M., Olsen, J. E. & Fossdal, C. G. The epigenetic memory of temperature during embryogenesis modifies the expression of bud burst-related genes in Norway spruce epitypes. Planta 246(3), 553–566 (2017).
Asante, D. K. et al. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant Cell Environ. 34(2), 332–346 (2011).
Asante, D. K. et al. Effect of bud burst forcing on transcript expression of selected genes in needles of Norway spruce during autumn. Plant Physiol. Bioch. 47(8), 681–689 (2009).
Ruttink, T. et al. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8), 2370–2390 (2007).
Source: Ecology - nature.com