in

The effects of atrazine on the microbiome of the eastern oyster: Crassostrea virginica

  • 1.

    Home. https://www.fao.org/home/en/.

  • 2.

    Delorenzo, M. E. Impacts of climate change on the ecotoxicology of chemical contaminants in estuarine organisms. Curr. Zool. 61(4), 641–652 (2015).

    Google Scholar 

  • 3.

    Banerjee, M. R. & Chapman, S. J. The significance of microbial biomass sulphur in soil. Biol. Fertil. Soils 22(1–2), 116–125 (1996).

    CAS  Google Scholar 

  • 4.

    Khan, A. et al. Scrutinizing impact of atrazine on stress biomarker: Plasma glucose concentration of fresh water fish, grass carp, (Ctenopharyngodon idella). Pure Appl. Biol. PAB 6(4), 1319–1327 (2017).

    CAS  Google Scholar 

  • 5.

    Toxic Substances Portal—Atrazine. https://www.atsdr.cdc.gov/phs.asp?id=336&tid-59 (2015).

  • 6.

    Toxic Substances Portal—Atrazine. https://www.atsdr.cdc.gov/phs.asp?id=336&tid-59 (2003).

  • 7.

    Univeristy of California, D. Photosystem II Inhibitors. https://herbicidesymptoms.ipm.ucanr.edu/MOA/Photosystem_II_Inhibitors.

  • 8.

    U.S. Environmental Protection Agency, National pesticide survey—Glossary: Washington, D.C., U.S. Government Printing Office, (7) (2011).

  • 9.

    U.S. Environmental Protection Agency, National pesticide survey—Glossary: Washington, D.C., U.S. Government Printing Office, (7) (2006).

  • 10.

    USDA dataset 2006. https://usda.custhelp.com/.

  • 11.

    Hayes, T. B. et al. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence. Environ. Health Perspect. 111(4), 568–575 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    de Voogd, N. J., Cleary, D. F., Polónia, A. R. & Gomes, N. C. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol. Ecol. 91(4), fiv019 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    DeLorenzo, M. E., Scott, G. & Ross, P. E. Toxicity of pesticides to aquatic microorganisms: A review. Environ. Toxicol. Chem. SETAC. 20, 84–98. https://doi.org/10.1897/1551-5028(2001)020<0084:TOPTAM>2.0.CO;2 (2001).

    CAS  Article  Google Scholar 

  • 14.

    Cragin, L. A. et al. Menstrual cycle characteristics and reproductive hormone levels in women exposed to atrazine in drinking water. Environ. Res. 111(8), 1293–1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Riquelme, C. A. R. L. O. S. et al. Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. J. Shellfish Res. 15(2), 369–374 (1996).

    Google Scholar 

  • 16.

    Ma, Y. X. et al. The use of Pseudoalteromonas sp. F15 in larviculture of the Yesso scallop, Patinopecten yessoensis. Aquac. Res. 50(7), 1844–1850 (2019).

    CAS  Google Scholar 

  • 17.

    Gibson, L. F., Woodworth, J. & George, A. M. Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169(1–2), 111–120 (1998).

    Google Scholar 

  • 18.

    Lategan, M. J., Booth, W., Shimmon, R. & Gibson, L. F. An inhibitory substance produced by Aeromonas media A199, an aquatic probiotic. Aquaculture 254(1–4), 115–124 (2006).

    CAS  Google Scholar 

  • 19.

    Brown, C. The effects of some selected bacteria on embryos and larvae of the American oyster, Crassostrea virginica. J. Invertebr. Pathol. 21(3), 215–223 (1973).

    Google Scholar 

  • 20.

    Lim, H. J., Kapareiko, D., Schott, E. J., Hanif, A. & Wikfors, G. H. Isolation and evaluation of new probiotic bacteria for use in shellfish hatcheries: I. Isolation and screening for bioactivity. J. Shellfish Res. 30(3), 609–616 (2011).

    Google Scholar 

  • 21.

    Karim, M. et al. Probiotic strains for shellfish aquaculture: Protection of eastern oyster, Crassostrea virginica, larvae and juveniles againsl bacterial challenge. J. Shellfish Res. 32(2), 401–409 (2013).

    Google Scholar 

  • 22.

    Colwell, R. R. & Liston, J. Microbiology of shellfish. Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl. Microbiol. 8(2), 104 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Cavallo, R. A., Acquaviva, M. I. & Stabili, L. Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from a Mediterranean area (Northern Ionian Sea, Italy). Environ. Monit. Assess. 149(1–4), 465–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79(3), 266–271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6(8), 1621 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Pedrós-Alió, C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 4, 449–466 (2012).

    ADS  Google Scholar 

  • 27.

    Widerström, M., Wiström, J., Sjöstedt, A. & Monsen, T. Coagulase-negative staphylococci: Update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur. J. Clin. Microbiol. Infect. Dis. 31(1), 7–20 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Volety, A. K. Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology 17(7), 579–590 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Powell, K. et al. A retrospective analysis of agricultural herbicides in surface water reveals risk plausibility for declines in submerged aquatic vegetation. Toxics 5(3), 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 30.

    Hively, W. D. et al. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed. Sci. Total Environ. 409(19), 3866–3878 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    U.S. Environmental Protection Agency, National pesticide survey—Glossary: Washington, D.C., U.S. Government Printing Office, (7). (2017)

  • 32.

    Christopher G., et al. Choptank ecological assessment: digital atlas: Baseline status report. NOAA technical memorandum NOS NCCOS; 213 115–132 (2016)

  • 33.

    Arfken, A. et al. Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS ONE 12(9), e0185071 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Hussein, S. Y., El-Nasser, M. A. & Ahmed, S. M. Comparative studies on the effects of herbicide atrazine on freshwater fish Oreochromis niloticus and Chrysichthyes auratus at Assiut, Egypt. Bull. Environ. Contam. Toxicol. 57(3), 503–510 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Trentacoste, S. V. et al. Atrazine effects on testosterone levels and androgen-dependent reproductive organs in peripubertal male rats. J. Androl. 22(1), 142–148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Pogrmic-Majkic, K. et al. Atrazine suppresses FSH-induced steroidogenesis and LH-dependent expression of ovulatory genes through PDE-cAMP signaling pathway in human cumulus granulosa cells. Mol. Cell. Endocrinol. 461, 79–88 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Wirbisky, S. E., Weber, G. J., Schlotman, K. E., Sepúlveda, M. S. & Freeman, J. L. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem. Toxicol. 98, 25–33 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    USGS Climate/Precipitation Data. https://www.usgs.gov/centers/cba.

  • 39.

    Yabuuchi, E. et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov.. Microbiol. Immunol. 36(12), 1251–1275 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Altura, M. A. et al. The first engagement of partners in the Euprymna scolopesVibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15(11), 2937–2950 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Kemp, W. M. et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).

    ADS  Google Scholar 

  • 42.

    Cranford, P. J., Ward, J. E., & Shumway, S. E. Bivalve filter feeding: Variability and limits of the aquaculture biofilter. Shellfish Aquac. Environ. 81–124. (2011).

  • 43.

    Garnier, M., Labreuche, Y., Garcia, C., Robert, M. & Nicolas, J. L. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 53(2), 187–196 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Estrada-De Los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67(6), 2790–2798 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Trabal Fernández, N. et al. Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol. Ecol. 88(1), 69–83 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Friedman, C. S. et al. Nocardia crassostreae sp. Nov., the causal agent of nocardiosis in Pacific oysters. Int. J. Syst. Evol. Microbiol. 48(1), 237–246 (1998).

    MathSciNet  Google Scholar 

  • 47.

    Meyer, G. R., Lowe, G. J., Gilmore, S. R. & Bower, S. M. Disease and mortality among Yesso scallops Patinopecten yessoensis putatively caused by infection with Francisella halioticida. Dis. Aquat. Org. 125(1), 79–84 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Yee-Duarte, J. A., Ceballos-Vázquez, B. P., Shumilin, E., Kidd, K. A. & Arellano-Martínez, M. Parasitic castration of chocolate clam Megapitaria squalida (Sowerby, 1835) caused by trematode larvae. J. Shellfish Res. 36(3), 593–599 (2017).

    Google Scholar 

  • 49.

    Carella, F. et al. Nocardiosis in Mediterranean bivalves: First detection of Nocardia crassostreae in a new host Mytilus galloprovincialis and in Ostrea edulis from the Gulf of Naples (Italy). J. Invertebr. Pathol. 114(3), 324–328 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: Friends or foes?. Nat. Rev. Immunol. 10(10), 735 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Chestnut, T. et al. Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS ONE 9(9), e106790 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Altizer, S. et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst. 34(1), 517–547 (2003).

    Google Scholar 

  • 53.

    Colwell, R. R. & Liston, J. Microbiology of shellfish Bacteriological study of the natural flora of Pacific oysters (Crassostrea gigas). Appl. Microbiol. 8(2), 104 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Romero, J. et al. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Microb. Ecol. 44(4), 365–371 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Lokmer, A., Kuenzel, S., Baines, J. F. & Wegner, K. M. The role of tissue-specific microbiota in initial establishment success of Pacific oysters. Environ. Microbiol. 18(3), 970–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    King, G. M., Judd, C., Kuske, C. R. & Smith, C. Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS ONE 7(12), e51475 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Wexler, H. M. Pump it up: Occurrence and regulation of multi-drug efflux pumps in Bacteroides fragilis. Anaerobe 18(2), 200–208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Wu, X. et al. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61(1), 69–78 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Pujalte, M. J., Ortigosa, M., Macián, M. C. & Garay, E. Aerobic and facultative anaerobic heterotrophic bacteria associated to Mediterranean oysters and seawater. Int. Microbiol. 2(4), 259–266 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Hernández-Zárate, G. & Olmos-Soto, J. Identification of bacterial diversity in the oyster Crassostrea gigas by fluorescent in situ hybridization and polymerase chain reaction. J. Appl. Microbiol. 100(4), 664–672 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Green, T. J. & Barnes, A. C. Bacterial diversity of the digestive gland of Sydney rock oysters, Saccostrea glomerata infected with the paramyxean parasite, Marteilia sydneyi. J. Appl. Microbiol. 109(2), 613–622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Fernandez-Piquer, J. et al. Molecular analysis of the bacterial communities in the live Pacific oyster (Crassostrea gigas) and the influence of postharvest temperature on its structure. J. Appl. Microbiol. 112(6), 1134–1143 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Jovel, J. et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 459 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Pierce, M. L. & Ward, J. E. Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J. Shellfish Res. 37(4), 793–806 (2018).

    Google Scholar 

  • 66.

    Trabal, N. et al. Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites. Microb. Ecol. 64(2), 555–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Vasconcelos, G. J. & Lee, J. S. Microbial flora of Pacific oysters (Crassostrea gigas) subjected to ultraviolet-irradiated seawater. Appl. Environ. Microbiol. 23(1), 11–16 (1972).

    CAS  Google Scholar 

  • 68.

    Pillai, C. T. Microbial flora of mussels in the natural beds and farms. CMFRI Bull. 29, 41–43 (1980).

    Google Scholar 

  • 69.

    Olafsen, J. A. et al. Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl. Environ. Microbiol. 59(6), 1848–1854 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Kueh, C. S. & Chan, K. Y. Bacteria in bivalve shellfish with special reference to the oyster. J. Appl. Bacteriol. 59(1), 41–47 (1985).

    CAS  Google Scholar 

  • 71.

    Wrange, A. L. et al. Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia. Biol. Invasions 12(5), 1145–1152 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism