in

The globally invasive small Indian mongoose Urva auropunctata is likely to spread with climate change

  • 1.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 24–27 (2016).

    • Article
    • Google Scholar
  • 2.

    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7 (2016).

  • 3.

    Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    • Article
    • Google Scholar
  • 4.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). 29, 129–151 (2006).

    • Article
    • Google Scholar
  • 5.

    Elith, J. & Leathwick, J. R. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    • Article
    • Google Scholar
  • 6.

    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

  • 7.

    Breiner, F. T., Guisan, A., Nobis, M. P. & Bergamini, A. Including environmental niche information to improve IUCN Red List assessments. Divers. Distrib. 23, 484–495 (2017).

    • Article
    • Google Scholar
  • 8.

    Gilchrist, J. S., Jennings, A. P., Veron, G. & Cavallini, P. Family Herpestidae (Mongooses). In Handbook of the mammals ofthe World: Vol. 1, Carnivores (eds. Wilson, D. E. & Mittermeier R. A.) vol. 1, 222–329 (2009).

  • 9.

    Berentsen, A. R., Pitt, W. C. & Sugihara, R. T. Ecology of the small Indian mongoose (Herpestes auropunctatus) in North America. In Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States (ed. Pitt, W. C., Beasley, J. C., Witmer, G.) 251–267, https://doi.org/10.1201/9781315157078 (2018).

  • 10.

    Barun, A., Niemiller, M. L., Fitzpatrick, B. M., Fordyce, J. A. & Simberloff, D. Can genetic data confirm or refute historical records? The island invasion of the small Indian mongoose (Herpestes auropunctatus). Biol. Invasions 15, 2243–2251 (2013).

    • Article
    • Google Scholar
  • 11.

    Ćirović, D., Raković, M., Milenković, M. & Paunović, M. Small Indian Mongoose Herpestes auropunctatus (Herpestidae, Carnivora): An invasive species in Montenegro. Biol. Invasions 13, 393–399 (2011).

    • Article
    • Google Scholar
  • 12.

    Ćirović, D. & Toholj, D. Distribution of Small Indian Mongoose (Herpestes auropunctatus) in the Eastern Herzegovina – spreading inside mainland. Balk. J. Wildl. Res. 2, 33–37 (2016).

    • Google Scholar
  • 13.

    Shekhar, K. S. The status of mongooses in central India. Small Carniv. Conserv. 29, 16–19 (2003).

    • Google Scholar
  • 14.

    Vilella, F. J. Biology of the Mongoose (Herpestes javanicus) in a Rain Forest of Puerto Rico. Biotropica 30, 120–125 (1998).

    • Article
    • Google Scholar
  • 15.

    Baldwin, P. H., Schwartz, C. W. & Schwartz, E. R. Life History and Economic Status of the Mongoose in Hawaii. J. Mammal. 33, 335–356 (1952).

    • Article
    • Google Scholar
  • 16.

    Simberloff, D., Dayan, T., Jones, C. & Ogura, G. Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology 81, 2086–2099 (2000).

    • Article
    • Google Scholar
  • 17.

    Mahmood, T. & Adil, A. Diet composition of small Indian mongoose (Herpestes javanicus) varies seasonally in its native range. Anim. Biol. 67, 69–80 (2017).

    • Article
    • Google Scholar
  • 18.

    Palmer, T. S. The danger of introducing noxious animals and birds. U.S. Dep. Agric. Agric. Res. Serv. 87–110, https://doi.org/10.5962/bhl.title.21976 (1898).

  • 19.

    Barbour, T. Some faunistic changes in the lesser Antilles. Proc. New Engl. Zool. club 11, 73–85 (1930).

    • Google Scholar
  • 20.

    Myers, J. G. A preliminary report on an investigation into the biological control of West Indian insect pests. Emp. Mark. Board 42, 172 (1931).

    • Google Scholar
  • 21.

    Westermann, J. H. Nature preservation in the Caribbean (1953).

  • 22.

    Barun, A., Simberloff, D. & Budinski, I. Impact of the small Indian mongoose on native amphibians and reptiles of the Adriatic islands, Croatia. Anim. Conserv. 13, 549–555 (2010).

    • Article
    • Google Scholar
  • 23.

    Everard, C. O. R. & Everard, J. D. Mongoose Rabies. Rev. Infect. Dis. 10, 610–614 (1988).

    • Article
    • Google Scholar
  • 24.

    Berentsen, A. R., Johnson, S. R., Gilbert, A. T. & VerCauteren, K. C. Exposure to Rabies in Small Indian Mongooses (Herpestes auropunctatus) from Two Regions in Puerto Rico. J. Wildl. Dis. 51, 896–900 (2015).

  • 25.

    Johnson, S. R., Berentsen, A. R., Ellis, C., Davis, A. & Vercauteren, K. C. Estimates of small Indian mongoose densities: Implications for rabies management. J. Wildl. Manage. 80, 37–47 (2016).

    • Article
    • Google Scholar
  • 26.

    Pimentel, D. Biology of the Indian mongoose in Puerto Rico. J. Mammal. 36, 62–68 (1955).

    • Article
    • Google Scholar
  • 27.

    Everard, C. O. R., Green, A. E. & Glosser, J. W. Leptospirosis in Trinidad and Grenada, with special reference to the mongoose. Trans. R. Soc. Trop. Med. Hyg. 70, 57–61 (1976).

  • 28.

    Shiokawa, K. et al. Peridomestic small Indian mongoose: An invasive species posing as potential zoonotic risk for leptospirosis in the Caribbean. Acta Trop. 190, 166–170 (2019).

  • 29.

    Miller, S. et al. Influence of Land Use and Climate on Salmonella Carrier Status in the Small Indian Mongoose (Herpestes auropunctatus) in Grenada, West Indies. J. Wildl. Dis. 51, 60–68 (2015).

    • Article
    • Google Scholar
  • 30.

    Jaffe, D. A. et al. Bartonella henselae in small Indian mongooses (Herpestes auropunctatus) from Grenada, West Indies. Vet. Microbiol. 216, 119–122 (2018).

  • 31.

    Cheng, T. et al. Parasites of small Indian mongoose, Herpestes auropunctatus, on St. Kitts, West Indies. Parasitol. Res. 117, 989–994 (2018).

  • 32.

    Courchamp, F., Chapuis, J. & Pascal, M. Reviews: Mammal invaders on islands: impact, control and control impact. Biol. Rev. 78, 347–383 (2003).

  • 33.

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl. Acad. Sci. 113, 11261–11265 (2016).

  • 34.

    Bosso, L. et al. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203 (2018).

    • Article
    • Google Scholar
  • 35.

    Taylor, A. T., Papeş, M. & Long, J. M. Incorporating fragmentation and non-native species into distribution models to inform fluvial fish conservation. Conserv. Biol. 32, 171–182 (2018).

  • 36.

    Guo, J. L. et al. Conservation strategy for aquatic plants: endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers. Conserv., https://doi.org/10.1007/s10531-019-01740-9 (2019).

  • 37.

    Schatz, A. M., Kramer, A. M. & Drake, J. M. Accuracy of climate-based forecasts of pathogen spread. R. Soc. (2017).

  • 38.

    Alt, K. G., Kochmann, J., Klimpel, S. & Cunze, S. Improving species distribution models of zoonotic marine parasites. Sci. Rep. 9, 9851 (2019).

  • 39.

    Waterson, A. M. et al. Modelling the climatic niche of turtles: A deep-time perspective. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 40.

    Castellanos-Frías, E., García, N. & Virgós, E. Assessment of the effect of climate changes in the Late Pleistocene and Holocene on niche conservatism of an arvicolid specialist. Sci. Rep. 8, 1–11 (2018).

  • 41.

    Pearson, R. G. & Dawson, T. P. Bioclimate envelope models: what they detect and what they hide – response to Hampe Glob. Ecol. Biogeogr. 13, 471–473 (2004).

    • Article
    • Google Scholar
  • 42.

    Elith, J. & Graham, C. H. Do they? How do they? WHY do they differ? on finding reasons for differing performances of species distribution models. Ecography (Cop.). 32, 66–77 (2009).

    • Article
    • Google Scholar
  • 43.

    Anderson, R. P. Harnessing the world’s biodiversity data: Promise and peril in ecological niche modeling of species distributions. Ann. N. Y. Acad. Sci. 1260, 66–80 (2012).

  • 44.

    Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).

    • Article
    • Google Scholar
  • 45.

    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science (80-.). 285, 1265–1267 (1999).

  • 46.

    Ahmad, R. et al. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Sci. Rep. 9, 1–15 (2019).

  • 47.

    Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol., https://doi.org/10.1038/s41559-017-0396-z (2017).

  • 48.

    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).

    • Article
    • Google Scholar
  • 49.

    Medley, K. A. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob. Ecol. Biogeogr. 19, 122–133 (2010).

    • Article
    • Google Scholar
  • 50.

    Tingleya, R., Vallinotob, M., Sequeirac, F. & Kearneyd, M. R. Realized niche shift during a global biological invasion. Proc. Natl. Acad. Sci. 111, 10233–10238 (2014).

  • 51.

    Rödder, D., Schmidtlein, S., Veith, M. & Lötters, S. Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? PLoS One 4 (2009).

  • 52.

    Rödder, D. & Lötters, S. Explanative power of variables used in species distribution modelling: An issue of general model transferability or niche shift in the invasive Greenhouse frog (Eleutherodactylus planirostris). Naturwissenschaften 97, 781–796 (2010).

  • 53.

    Stiels, D., Gaißer, B., Schidelko, K., Engler, J. O. & Rödder, D. Niche shift in four non-native estrildid finches and implications for species distribution models. Ibis (Lond. 1859). 157, 75–90 (2014).

    • Article
    • Google Scholar
  • 54.

    Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).

    • Article
    • Google Scholar
  • 55.

    Broennimann, O. & Guisan, A. Predicting current and future biological invasions: Both native and invaded ranges matter. Biol. Lett. 4, 585–589 (2008).

  • 56.

    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).

    • Article
    • Google Scholar
  • 57.

    Fernández, M. & Hamilton, H. Ecological niche transferability using invasive species as a case study. PLoS One 10, 1–17 (2015).

    • Google Scholar
  • 58.

    Bellard, C. et al. Will climate change promote future invasions? Glob. Chang. Biol. 19, 3740–3748 (2013).

  • 59.

    Lowe, S., Brown, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN) (2000).

  • 60.

    Veron, G. & Jennings, A. P. Javan mongoose or small Indian mongoose–who is where? Mamm. Biol. 87, 62–70 (2017).

    • Article
    • Google Scholar
  • 61.

    Veron, G., Patou, M. L., Pothet, G., Simberloff, D. & Jennings, A. P. Systematic status and biogeography of the Javan and small Indian mongooses (Herpestidae, Carnivora). Zool. Scr. 36, 1–10 (2007).

    • Article
    • Google Scholar
  • 62.

    Patou, M. L. et al. Molecular phylogeny of the Herpestidae (Mammalia, Carnivora) with a special emphasis on the Asian Herpestes. Mol. Phylogenet. Evol. 53, 69–80 (2009).

  • 63.

    Kühn, I. Incorporating spatial autocorrelation may invert observed patterns. Divers. Distrib. 13, 66–69 (2007).

    • Google Scholar
  • 64.

    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 275, 73–77 (2014).

    • Article
    • Google Scholar
  • 65.

    Hijmans, R. J. Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93, 679–688 (2012).

    • Article
    • Google Scholar
  • 66.

    Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299 (2009).

    • Article
    • Google Scholar
  • 67.

    Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography (Cop.). 37, 1084–1091 (2014).

    • Google Scholar
  • 68.

    Castellanos, A. A., Huntley, J. W., Voelker, G. & Lawing, A. M. Environmental filtering improves ecological niche models across multiple scales. Methods Ecol. Evol. 481–492, https://doi.org/10.1111/2041-210X.13142 (2019).

  • 69.

    Louppe, V., Leroy, B., Herrel, A. & Veron, G. Current and future climatic regions favourable for a globally introduced wild carnivore, the raccoon Procyon lotor. Sci. Rep. 9, 1–13 (2019).

  • 70.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 71.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution (N. Y). 62, 2868–2883 (2008).

    • Google Scholar
  • 72.

    Broennimann, O. et al. Package ‘ ecospat’ (2016).

  • 73.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. (2019).

  • 74.

    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).

    • Article
    • Google Scholar
  • 75.

    Roussel, J.-R. et al. Package ‘geometry’. (2019).

  • 76.

    Fernandes, R. F. et al. Species distribution models support the need of international cooperation towards successful management of plant invasions. J. Nat. Conserv. 49, 85–94 (2019).

    • Article
    • Google Scholar
  • 77.

    Scherrer, D., Christe, P. & Guisan, A. Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Divers. Distrib. 770–782, https://doi.org/10.1111/ddi.12893 (2019).

  • 78.

    Rathore, P., Roy, A. & Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol. Indic. 102, 199–207 (2019).

    • Article
    • Google Scholar
  • 79.

    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).

    • Article
    • Google Scholar
  • 80.

    Ripley, B. D. Pattern recognition and neural networks. Cambridge University Press, https://doi.org/10.1017/CBO9780511812651 (1996).

  • 81.

    Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).

    • Article
    • Google Scholar
  • 82.

    Hastie, T., Tibshirani, R. & Buja, A. Flexible Discriminant. Analysis. J. Am. Stat. Assoc. 89, 1255–1270 (1994).

  • 83.

    Hastie, T. & Tibshirani, R. Generalized additive models. In Statistical Models (eds. Chambers, J. M. & Hastie, T.) 249–308 (S. Wadsworth and Brooks/Cole Advanced Books and Software, 1991).

  • 84.

    Ridgeway, G. The State of Boosting. Comput. Sci. Stat. 31, 172–181 (1999).

    • Google Scholar
  • 85.

    McCullagh P. & Nelder J.A. Generalized Linear Models, https://doi.org/10.1007/978-1-4899-3242-6 (1989).

  • 86.

    Friedman, J. H. Greedy function machine: A gradient boosting machine. Statistics (Ber). 29, 1189–1232 (2001).

    • MATH
    • Google Scholar
  • 87.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maxim entropy modeling of species geographic distributions. Int. J. Glob. Environ. Issues 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).

  • 88.

    Breiman, L. Random Forest. Mach. Learn. 45, 5–32 (2001).

  • 89.

    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – A platform for ensemble forecasting of species distributions. Ecography (Cop.). 32, 369–373 (2009).

    • Article
    • Google Scholar
  • 90.

    Lobo, J. M., Jiménez-valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2007).

    • Article
    • Google Scholar
  • 91.

    Leroy, B. et al. Without quality presence-absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 1–9, https://doi.org/10.1111/jbi.13402 (2018).

  • 92.

    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Modell. 157, 281–300 (2002).

    • Article
    • Google Scholar
  • 93.

    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Modell. 199, 142–152 (2006).

    • Article
    • Google Scholar
  • 94.

    Polidori, C., Nucifora, M. & Sánchez-Fernández, D. Environmental niche unfilling but limited options for range expansion by active dispersion in an alien cavity-nesting wasp. BMC Ecol. 18, 36 (2018).

  • 95.

    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

  • 96.

    Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    • Article
    • Google Scholar
  • 97.

    Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: Insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).

    • Article
    • Google Scholar
  • 98.

    Hill, M. P., Gallardo, B. & Terblanche, J. S. A global assessment of climatic niche shifts and human influence in insect invasions. Glob. Ecol. Biogeogr. 26, 679–689 (2017).

    • Article
    • Google Scholar
  • 99.

    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. B Biol. Sci. 272, 1663–1668 (2005).

    • Article
    • Google Scholar
  • 100.

    Bellard, C., Rysman, J. F., Leroy, B., Claud, C. & Mace, G. M. A global picture of biological invasion threat on islands. Nat. Ecol. Evol. 1, 1862–1869 (2017).

    • Article
    • Google Scholar
  • 101.

    Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080 (2017).

  • 102.

    Nellis, D. W. & Small, V. Mongoose Predation on Sea Turtle Eggs and Nests. Assoc. Trop. Biol. Conserv. 15, 159–160 (1983).

    • Google Scholar
  • 103.

    Brown, W. C. & Gibbons, J. R. H. Species of the Emoia samoensis group of lizards (Scincidae) in the Fiji islands, with descriptions of two new species. Proc. Calif. Acad. Sci. 44, 41–53 (1986).

    • Google Scholar
  • 104.

    UICN France. Les vertébrés terrestres introduits en outre-mer et leurs impacts. 100 (2011).

  • 105.

    Gérard, A., Jourdan, H., Millon, A. & Vidal, E. Knocking on Heaven’s door: Are novel invaders necessarily facing Naïve native species on islands? PLoS One 11, 1–14 (2016).

  • 106.

    Wostenberg, D. J., Hopken, M. W., Shiels, A. B. & Piaggio, A. J. Using DNA to Identify the Source of Invasive Mongooses, Herpestes auropunctatus (Carnivora: Herpestidae) Captured on Kaua’i, Hawaiian Islands. Pacific Sci. 73, 215 (2019).

    • Article
    • Google Scholar
  • 107.

    Russell, J. C., Beaven, B. M., MacKay, J. W. B., Towns, D. R. & Clout, M. N. Testing island biosecurity systems for invasive rats. Wildl. Res. 35, 215–221 (2008).

    • Article
    • Google Scholar
  • 108.

    Engeman, R. M., Shiels, A. B. & Clark, C. S. Objectives and integrated approaches for the control of brown tree snakes: An updated overview. J. Environ. Manage. 219, 115–124 (2018).

    • Article
    • Google Scholar
  • 109.

    Pandey, R. & Papes, M. Changes in future potential distributions of apex predator and mesopredator mammals in North America. Reg. Environ. Chang. 1223–1233 (2017).

  • 110.

    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature, https://doi.org/10.1038/s41586-019-1495-6 (2019).

  • 111.

    Lorenz, R., Stalhandske, Z. & Fischer, E. M. Detection of a Climate Change Signal in Extreme Heat, Heat Stress, and Cold in Europe From Observations. Geophys. Res. Lett., https://doi.org/10.1029/2019gl082062 (2019).

  • 112.

    Tvrtkovic, N. & Krystufek, B. Small Idian mongoose Herpestes auropunctatus (Hodgson, 1836) on the Adriatic Islands of Yugoslavia. Bonner Zool. Beitrage 41, 3–8 (1990).

    • Google Scholar
  • 113.

    Dzúkić, G. & Kalezić, M. The biodiversity of amphibians and reptiles in the Balkan Peninsula. In Balkan biodiversity. Pattern and process in the European Hotspot. (eds. Griffits, H. I., Krystufek, B. & Reed, J. M.) 167–192 (Kluwer Academic Publishers, 2004).


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production