in

The greenhouse gas offset potential from seagrass restoration

  • 1.

    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

  • 2.

    Champenois, W. & Borges, A. V. Seasonal and interannual variations of community metabolism rates of a Posidonia oceanica seagrass meadow. Limnol. Oceanogr. 57(1), 347–361 (2012).

  • 3.

    Tokoro, T. et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob. Chang. Biol. 20(6), 1873–1884 (2014).

  • 4.

    Gullström, M. et al. Blue carbon storage in tropical seagrass meadows relates to carbonate stock dynamics, plant sediment processes, and landscape context: insights from the Western Indian Ocean. Ecosys. 21, 511–566 (2018).

  • 5.

    Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509 (2012).

  • 6.

    Orth, R. J. et al. A global crisis for seagrass ecosystems. BioSci. 56(12), 987–996 (2006).

    • Article
    • Google Scholar
  • 7.

    Waycott, M. et al. Accelerating loss of seagrass across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106(30), 12377–12381 (2009).

  • 8.

    Macreadie, P. I. et al. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc. B. 282(1817), 20151537, https://doi.org/10.1098/rspb.2015.1537 (2015).

  • 9.

    Marbà, N. et al. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks. J. Ecol. 103, 296–302 (2015).

  • 10.

    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Env. 15(5), 257–265 (2017).

    • Article
    • Google Scholar
  • 11.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9), e43542, https://doi.org/10.1371/journal.pone.0043542 (2012).

  • 12.

    Greiner, J. T., McGlathery, K. J., Gunnell, J. & McKee, B. A. Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS ONE 8(8), e72469, https://doi.org/10.1371/journal.pone.0072469 (2013).

  • 13.

    Thorhaug, A., Poulos, H. M., López-Portillo, L., Ku, T. C. W. & Berlyn, G. P. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci. Total Environ. 605-6, 626–636 (2017).

  • 14.

    Nellemann, C., et al. Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme 1-80 (GRID-Arendal (2009).

  • 15.

    Röhr, M. E. et al. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows. Global Biogeochem. Cycles 32(10), 1457–1475 (2018).

  • 16.

    Russell, M. & Greening, H. Estimating benefits in a recovering estuary: Tampa Bay, Florida. Estuaries Coast. 38(Suppl 1), S9–S18 (2015).

  • 17.

    Reynolds, L. K., Waycott, M., McGlathery, K. J. & Orth, R. J. Ecosystem services returned through seagrass restoration. Restor. Ecol. 24(5), 583–588 (2016).

    • Article
    • Google Scholar
  • 18.

    Johannessen, S. C. & Macdonald, R. W. Geoengineering with seagrasses: is credit due where credit is given? Env. Res. Letters 11, 113001, https://doi.org/10.1088/1748-9326/11/11/113001 (2016).

  • 19.

    Belshe, E. F., Mateo, M. A., Gillis, L., Zimmer, M. & Teichberg, M. Muddy waters: unintentional consequences of blue carbon research obscure our understanding of organic carbon dynamics in seagrass ecosystems. Front. Mar. Sci. 4, 125, https://doi.org/10.3389/fmars.2017.00125 (2017).

    • Article
    • Google Scholar
  • 20.

    Howard, J. L., Creed, J. C., Aguiar, M. V. P. & Fourqurean, J. W. CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol. Oceanogr. 63(1), 160–172 (2018).

  • 21.

    Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M. & Beardall, J. Addressing calcium carbonate cycling in blue carbon accounting. Limnol. Oceanogr. Lett. 2, 195–201 (2017).

    • Article
    • Google Scholar
  • 22.

    Saderne, V. et al. Role of carbonate burial in “blue carbon” budgets. Nat. Commun. 10, 1106, https://doi.org/10.1038/s41467-019-08842-6 (2019).

  • 23.

    Verified Carbon Standard. VCS Project Database. Available at: http://www.vcsprojectdatabase.org/ (2017).

  • 24.

    Emmer, I., et al. Methodology for Tidal Wetland and Seagrass Restoration. Verified Carbon Standard, VM0033 Version 1.0. https://verra.org/methodology/vm0033-methodology-for-tidal-wetland-and-seagrass-restoration-v1-0/ (2015).

  • 25.

    Emmer I., von Unger, M., Needelman, B.A., Crooks, S., & Emmett-Mattox, S. Coastal Blue Carbon in Practice: A Manual for Using the VCS Methodology for Tidal Wetland and Seagrass Restoration, V 1.0. 82p (Arlington, VA: Restore America’’s Estuaries (2015).

  • 26.

    Howard, J. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15(1), 42–50 (2017).

    • Article
    • Google Scholar
  • 27.

    Duarte, C. M. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14, 301–310 (2017).

  • 28.

    Röhr, M. E., Boström, C., Canal-Vergés, P. & Holmer, M. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows. Biogeosciences 13, 6139–6153 (2016).

  • 29.

    Rozaimi, M. et al. Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance. Mar. Poll. Bull. 119, 253–260 (2017).

  • 30.

    Duarte, C. M. et al. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, GB4032, https://doi.org/10.1029/2010GB003793 (2010).

  • 31.

    Johnson, R. A., Gulick, A. G., Bolten, A. B. & Bjorndal, K. A. Blue carbon stores in tropical seagrass meadows maintained under green turtle grazing. Sci. Rep. 7, 13545, https://doi.org/10.1038/s41598-017-13142-4 (2017).

  • 32.

    Oreska, M. P. J. et al. Comment on Geoengineering with seagrasses: is credit due where credit is given? Environ. Res. Lett. 13(3), 038001, https://doi.org/10.1088/1748-9326/aaae72 (2018).

  • 33.

    Mateo, M. A., Cebrián, J., Dunton, K., & Mutchler, T. Carbon flux in seagrass ecosystems in Seagrasses: Biology, Ecology and Conservation (eds. Larkum, A. W. D., Orth, R. J., & Duarte, C. M.) 159-192 (Netherlands: Springer (2006).

  • 34.

    Needelman, B. et al. The science and policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration. Estuaries Coast. 41(8), 2159–2171 (2018).

  • 35.

    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    • Article
    • Google Scholar
  • 36.

    United Nations Framework Convention on Climate Change (UNFCCC). Global Warming Potentials. http://unfccc.int/ghg_data/items/3825.php (2017).

  • 37.

    Roughan, B. L., Kellman, L., Smith, E. & Chmura, G. L. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries. Environ. Res. Lett. 13, 044034, https://doi.org/10.1088/1748-9326/aab63c (2018).

  • 38.

    Pollard, P. C. & Moriarty, D. J. W. Organic carbon decomposition, primary and bacterial productivity, and sulphate reduction, in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar. Ecol. Prog. Ser. 69, 149–159 (1991).

  • 39.

    Welsh, D. et al. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar. Ecol. Prog. Ser. 208, 65–77 (2000).

  • 40.

    Holmer, M., Anderson, F. Ø., Nielsen, S. L. & Boschker, H. T. S. The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat. Bot. 71, 1–17 (2001).

  • 41.

    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).

    • Article
    • Google Scholar
  • 42.

    Shieh, W. Y. & Yang, J. T. Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J. Exp. Mar. Biol. Ecol. 218, 229–241 (1997).

  • 43.

    Oremland, R. S. Methane production in shallow-water, tropical marine sediments. Appl. Environ. Microbiol. 30(4), 602–608 (1975).

  • 44.

    Moriarty, D. J. W. et al. Microbial biomass and productivity in seagrass beds. Geomicrobiology Journal 4(1), 21–51 (1985).

  • 45.

    Isaksen, M. F. & Finster, K. Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar. Ecol. Prog. Ser. 137, 187–194 (1996).

  • 46.

    Lee, K.-S. & Dunton, K. H. Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. J. Exp. Mar. Bio. Ecol. 255, 201–214 (2000).

  • 47.

    Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985, https://doi.org/10.1126/sciadv.aao4985 (2018).

  • 48.

    Al-Haj, A. N., & Fulweiler, R. W. A synthesis of methane emissions from shallow water coastal ecosystems. Global Change Biol. https://doi.org/10.1111/gcb.15046 (2020).

  • 49.

    Garcias-Bonet, N. & Duarte, C. M. Methane production by seagrass ecosystems in the Red Sea. Front. Mar. Sci. 4, 340, https://doi.org/10.3389/fmars.2017.00340 (2017).

    • Article
    • Google Scholar
  • 50.

    Nakagawa, T., Tsuchiya, Y., Ueda, S., Fukui, M. & Takahashi, R. Eelgrass sediment microbiome as a nitrous oxide sink in brackish Lake Akkeshi, Japan. Microbes Environ. 34(1), 13–22 (2019).

  • 51.

    Intergovernmental Panel on Climate Change (IPCC). 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds. Hirashi, T., et al.). 354p. (Switzerland: IPCC Press (2014).

  • 52.

    Mateo, M. A. & Romero, J. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Mar. Ecol. Prog. Ser. 151, 43–53 (1997).

  • 53.

    Serrano, O., Mateo, M. A., Renom, P. & Julià, R. Characterization of soils beneath a Posidonia oceanica meadow. Geoderma 185-186, 26–36 (2012).

  • 54.

    Paling E. I., Fonseca, M., van Katwijk, M. M., & van Keulen, M. Seagrass restoration in Coastal Wetlands: An Integrated Ecosystems Approach (eds. Perillo, G. M. E., Wolanski, E., Cahoon, D. R., & Brinson, M.) 687–713 (Amsterdam: Elsevier (2009).

  • 55.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9(10), 552–560 (2011).

    • Article
    • Google Scholar
  • 56.

    Hansen, J. C. R. & Reidenbach, M. A. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar. Ecol. Prog. Ser. 448, 271–287 (2012).

  • 57.

    Oreska, M. P. J., McGlathery, K. J. & Porter, J. H. Seagrass blue carbon accumulation at the meadow-scale. PLoS ONE 12(4), e0176630, https://doi.org/10.1371/journal.pone.0176630 (2017).

  • 58.

    Berg, P. et al Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64: 2586-2604 (2019).

  • 59.

    Berger, A. E., Berg, P., McGlathery, K. J. & Delgard, M. L. Long-term trends and resilience of seagrass metabolism: a decadal aquatic eddy covariance study. Limnol. Oceanogr. https://doi.org/10.1002/lno.11397 (2020).

  • 60.

    Rheuban, J. E., Berg, P. & McGlathery, K. J. Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnol. Oceanogr. 59(4), 1376–1387 (2014).

  • 61.

    Ferguson, A. J. P. et al. Oxygen and carbon metabolism of Zostera muelleri across a depth gradient – Implications for resilience and blue carbon. Estuar. Coast. Shelf Sci. 187(5), 216–230 (2017).

  • 62.

    Potouroglou, M. et al. Sci. Reports 7, 11917, https://doi.org/10.1038/s41598-017-12354-y (2017).

  • 63.

    Lefebvre, A., Thompson, C. E. L. & Amos, C. L. Influence of Zostera marina canopies on unidirectional flow, hydraulic roughness and sediment movement. Continental Shelf Res. 30, 1783–1794 (2010).

  • 64.

    Oreska, M. P. J., Wilkinson, G. M., McGlathery, K. J., Bost, M. & McKee, B. A. Non-seagrass carbon contributions to seagrass sediment blue carbon. Limnol. Oceanogr. 63(S1), S3–S18 (2018).

  • 65.

    Kollmuss, A., Lazarus, M., Lee, C., LeFranc, M., & Polycarp, C. Handbook of Carbon Offset Programs: Trading Systems, Funds, Protocols and Standards. 210p. (London.: Earthscan (2010).

  • 66.

    Forest Trends. Unlocking Potential: State of the Voluntary Carbon Markets 2017. 52p (Washington, D.C.: Forest Trends’ Ecosystem Marketplace (2017).

  • 67.

    Marbà, N. et al. Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Mar. Ecol. Prog. Ser. 137, 203–213 (1996).

  • 68.

    Orth, R. J. & McGlathery, K. J. Eelgrass recovery in the coastal bays of the Virginia Coast Reserve, USA. Mar. Ecol. Prog. Ser. 448, 173–176 (2012).

  • 69.

    McGlathery, K. J. et al. Recovery trajectories during state change from bare sediment to eelgrass dominance. Mar. Ecol. Prog. Ser. 448, 209–221 (2012).

  • 70.

    Orth, R. J., Moore, K. A., Marion, S. R., Wilcox, D. J. & Parrish, D. B. Seed addition facilitates eelgrass recovery in a coastal bay system. Mar. Ecol. Prog. Ser. 448, 177–195 (2012).

  • 71.

    Fourqurean, J. W., et al. Field sampling of soil carbon pools in coastal ecosystems in Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows (eds. Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., Telszewski, M.) 39-66 (Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature (2014).

  • 72.

    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem. Cycles 24, 1–8 (2010).

  • 73.

    Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows (eds. Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., Telszewski, M.) 15-24 (Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA (2014).

  • 74.

    Environmental Systems Research Institute. ArcGIS Desktop: Release 10.2. https://www.esri.com (2014).

  • 75.

    Thomas, E. Influence of Zostera marina on wave dynamics, sediment suspension, and bottom boundary layer development within a shallow coastal bay. Thesis submitted to the University of Virginia 28-30 (2014).

  • 76.

    McGlathery, K. J. Above- and Below-Ground Biomass and Canopy Height of Seagrass in Hog Island Bay and South Bay, VA 2007-2017. Environmental Data Initiative. https://doi.org/10.6073/pasta/09a0ce35bb3fc72113b5a16ad5b0d6bd (2017).

  • 77.

    McGlathery K. J. Carbon and Nitrogen in Seagrass Tissue from Virginia Coastal Bays, 2010-2017. Environmental Data Initiative. https://doi.org/10.6073/pasta/b4d1f74041d329386591a32e9ea202b2 (2017).

  • 78.

    Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1); https://doi.org/10.18637/jss.v067.i01 (2015).

  • 79.

    R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org (2017).

  • 80.

    Virginia Institute of Marine Science (VIMS). SAV in Chesapeake Bay and Coastal Bays. Available at: http://web.vims.edu/ bio/sav/ (2016).

  • 81.

    McGlathery, K. J. Density of seagrass in Hog Island Bay and South Bay, VA 2007-2017. Environmental Data Initiative. https://doi.org/10.6073/pasta/5a6ea442cf59cabb3112bb634a968ae5 (2017).

  • 82.

    Bahlmann, E. et al. Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal). Biogeosci. Discuss. 11, 10571–10603 (2014).

  • 83.

    Barber, T. R. & Carlson, P. R. Effects of seagrass die-off on benthic fluxes and porewaterconcentrations of ∑CO2, ∑H2S, and CH4 in Florida Bay sediments in Biogeochemistry of Global Change: Radiatively Active Trace Gases (ed. Oremland, R. S.) 530-550 (New York: Chapman & Hall (1993).

  • 84.

    Crill, P. M. & Martens, C. S. Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments. Limnol. Oceanogr. 28(6), 1117–1130 (1983).

  • 85.

    Deborde, J. et al. Methane sources, sinks, and fluxes in a temperate tidal lagoon: the Archachon lagoon (SW France). Estuar. Coast. Shelf Sci. 89(4), 256–266 (2010).

  • 86.

    Banerjee, K., et al Seagrass and macrophyte mediated CO2 and CH4 dynamics in shallow coastal waters. PLoS ONE e0203922; https://doi.org/10.1371/journal.pone.0203922 (2018).

  • 87.

    Sansone, F. J., Rust, T. M. & Smith, S. V. Methane distribution and cycling in Tomales Bay, California. Estuaries 21(1), 66–77 (1998).


  • Source: Ecology - nature.com

    The intensification of Arctic warming as a result of CO2 physiological forcing

    Accelerating invasion potential of disease vector Aedes aegypti under climate change