in

The immune response of bats differs between pre-migration and migration seasons

  • 1.

    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88(1), 87–98 (2000).

    Article  Google Scholar 

  • 2.

    Martin, L. B., Scheuerlein, A. & Wikelski, M. Immune activity elevates energy expenditure of house sparrows: A link between direct and indirect costs?. Proc. R. Soc. Lond. B 270(1511), 153–158 (2003).

    Article  Google Scholar 

  • 3.

    Klasing, J.C. The costs of immunity. Acta Zool. Sin. 50, 961–969 (2004).

  • 4.

    Hasselquist, D. & Nilsson, J. Å. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds?. Anim. Behav. 83(6), 1303–1312 (2012).

    Article  Google Scholar 

  • 5.

    Demas, G. E., Chefer, V., Talan, M. I. & Nelson, R. J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. Am. J. Physiol 273, R1631–R1637 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Otálora-Ardila, A., Herrera, M. L. G., Flores-Martinez, J. J. & Welch, K. C. Jr. Metabolic cost of the activation of immune response in the fish-eating myotis (Myotis vivesi): The effects of inflammation and the acute phase response. PLoS ONE 11, e0164938 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Costantini, D. & Møller, A. P. Does immune response cause oxidative stress in birds? A meta-analysis. Comp. Biochem. Physiol. A 153, 339–344 (2009).

    Article  CAS  Google Scholar 

  • 8.

    Canale, C. I. & Henry, P. Y. Energetic costs of the immune response and torpor use in a primate. Funct. Ecol. 25, 557–565 (2011).

    Article  Google Scholar 

  • 9.

    Wikelski, M. et al. Costs of migration in free-flying songbirds. Nature 423(6941), 704–704 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Jenni-Eiermann, S., Jenni, L., Smith, S. & Costantini, D. Oxidative stress in endurance flight: An unconsidered factor in bird migration. PLoS ONE 9, e97650 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 11.

    Costantini, D., Lindecke, O., Petersons, G. & Voigt, C. C. Migratory flight imposes oxidative stress in bats. Curr. Zool. 65, 147–153 (2019).

    PubMed  Article  Google Scholar 

  • 12.

    Troxell, S. A., Holderied, M. W., Pētersons, G. & Voigt, C. C. Nathusius’ bats optimize long-distance migration by flying at maximum range speed. J. Exp. Biol. 222, jeb176396 (2019).

  • 13.

    Dierschke, V., Mendel, B. & Schmaljohann, H. Differential timing of spring migration in northern wheatears Oenanthe oenanthe: Hurried males or weak females?. Behav. Ecol. Sociobiol. 57, 470–480 (2005).

    Article  Google Scholar 

  • 14.

    Hasselquist, D. Comparative immunoecology in birds: Hypotheses and tests. J. Ornith. 148(2), 571–582 (2007).

    Article  Google Scholar 

  • 15.

    Buehler, D. M. & Piersma, T. Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos. Trans. R. Soc. B 363(1490), 247–266 (2007).

    Article  Google Scholar 

  • 16.

    Svensson, E., Råberg, L., Koch, C. & Hasselquist, D. Energetic stress, immunosuppression and the costs of an antibody response. Funct. Ecol. 12(6), 912–919 (1998).

    Article  Google Scholar 

  • 17.

    Owen, J. C. & Moore, F. R. Seasonal differences in immunological condition of three species of thrushes. Condor 108(2), 389–398 (2006).

    Article  Google Scholar 

  • 18.

    Altizer, S. et al. Animal migration and infectious disease risk. Science 331(6015), 296–302 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Eikenaar, C., Isaksson, C. & Hegemann, A. A hidden cost of migration? Innate immune function versus antioxidant defense. Ecol. Evol. 8(5), 2721–2728 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Weber, T. P. & Stilianakis, N. I. Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerg. Infect. Dis. 13(8), 1139 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Owen, J. C. & Moore, F. R. Relationship between energetic condition and indicators of immune function in thrushes during spring migration. Can. J. Zool. 7, 638–647 (2008).

    Article  CAS  Google Scholar 

  • 22.

    Tobler, M., Ballen, C., Healey, M., Wilson, M. & Olsson, M. Oxidant trade-offs in immunity: An experimental test in a lizard. PLoS ONE 10(5), e0126155 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 23.

    Wang, D., Malo, D. & Hekimi, S. Elevated mitochondrial reactive oxygen species generation affects the immune response via hypoxia-inducible factor-1 in long-lived Mclk1+/− mouse mutants. J. Immunol. 184, 582–590 (2009).

    PubMed  Article  CAS  Google Scholar 

  • 24.

    Case, A. J. et al. Elevated mitochondrial superoxide disrupts normal T cell development, impairing adaptive immune responses to an influenza challenge. Free Radic. Biol. Med. 50, 448–458 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Møller, A. P. & Erritzøe, J. Host immune defence and migration in birds. Evol. Ecol. 12(8), 945–953 (1998).

    Article  Google Scholar 

  • 26.

    Popa-Lisseanu, A. G. & Voigt, C. C. Bats on the move. J. Mammal. 90(6), 1283–1289 (2009).

    Article  Google Scholar 

  • 27.

    Krauel, J.J., & McCracken, G. F. Recent advances in bat migration research. in Bat Evolution, Ecology, and Conservation 293–313. (Springer, New York, 2013).

  • 28.

    Steffens, R., Zöphel, U. & Brockmann, D. 40th Anniversary Bat Marking Centre Dresden—Evaluation of Methods and Overview of Results. (Sächsisches Landesamt für Umwelt und Geologie, Dresden, 2004).

  • 29.

    Roberts, B. J., Catterall, C. P., Eby, P. & Kanowski, J. Long-distance and frequent movements of the flying-fox Pteropus poliocephalus: Implications for management. PLoS ONE 7(8), e42532 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Speakman, J. R., Thomas, D. W., Kunz, T. H., & Fenton, M. B. Physiological ecology and energetics of bats. in Bat Ecology (eds. Kunz, T.H. & Fenton M.B.), 430–490 (Chicago University Press, Chicago, 2003).

  • 31.

    Voigt, C. C., Borrisov, I. M. & Voigt-Heucke, S. L. Terrestrial locomotion imposes high metabolic requirements on bats. J. Exp. Biol. 215(24), 4340–4344 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    McGuire, L. P., Jonasson, K. A., & Guglielmo, C.G. Bats on a budget: torpor-assisted migration saves time and energy. PLoS ONE9(12) (2014).

  • 33.

    Brunet-Rossinni, A. K. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech. Ageing Dev. 125, 11–20 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Filho, D. W., Althoff, S. L., Dafré, A. L. & Boveris, A. Antioxidant defenses, longevity and ecophysiology of South American bats. Comp. Biochem. Physiol. Part C 146, 214–220 (2007).

    Google Scholar 

  • 35.

    Salmon, A. B. et al. The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23, 2317–2326 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Frugivory is associated with low measures of plasma oxidative stress and high antioxidant concentration in free-ranging bats. Naturwissenschaften 101(4), 285–290 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Inflammatory challenge increases measures of oxidative stress in a free-ranging, long-lived mammal. J. Exp. Biol. 216, 4514–4519 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Costantini D, Czirják, G. Á., Bustamante, P., Bumrungsri, S., & Voigt, C.C. Impact of land use on an insectivorous tropical bat: the importance of mercury, physio-immunology and trophic position. Sci. Total Environ.671, 1077–1085 (2019).

  • 40.

    Wibbelt, G., Moore, M. S., Schountz, T. & Voigt, C. C. Emerging diseases in Chiroptera: Why bats?. Biol. Lett. 6, 438–440 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B 280(1756), 20122753 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546(7660), 646–650 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Drexler, J. F. et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 3, 796 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Hayman, D. T. S. et al. Ecology of zoonotic infectious diseases in bats: Current knowledge and future directions. Zoonoses Public Health 60(1), 2–21 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Pētersons, G. Seasonal migrations of northeastern populations of Pipistrellus nathusii. Myotis 41–42, 29–56 (2004).

    Google Scholar 

  • 46.

    Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46(6), 1000–1015 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Fritze, M., et al. Immune response of hibernating European bats to a fungal challenge. Biol. Open8, bio046078 (2019).

  • 48.

    Stockmaier, S., Dechmann, D. K., Page, R. A. & O’Mara, M. T. No fever and leukocytosis in response to a lipopolysaccharide challenge in an insectivorous bat. Biol. Lett. 11, 4–7 (2015).

    Article  CAS  Google Scholar 

  • 49.

    Weise, P., Czirják, G. Á., Lindecke, O., Bumrungsri, S. & Voigt, C. C. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaereophon plicatus). PeerJ 5, e3570 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Hegemann, A. et al. Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia 188(4), 1011–1024 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Eikenaar, C. & Hegemann, A. Migratory common blackbirds have lower innate immune function during autumn migration than resident conspecifics. Biol. Lett. 12, 20160078 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Owen, J. C. & Moore, F. R. Swainson’s thrushes in migratory disposition exhibit reduced immune function. J. Ethol. 26(3), 383–388 (2008).

    Article  Google Scholar 

  • 53.

    Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).

    Article  Google Scholar 

  • 54.

    Kozak, W.I.E.S., Conn, C.A. & Kluger, M. J.Lipopolysaccharide induces fever and depresses locomotor activity in unrestrained mice. Am. J. Physiol. Reg. Integr. Comp. Physiol.266(1), R125–R135 (1994).

  • 55.

    Schneeberger, K., Czirják, G. Á. & Voigt, C. C. Measures of the constitutive immune system are linked to diet and roosting habits of neotropical bats. PLoS ONE 8(1), e54023 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Cray, C., Zaias, J. & Altman, N. H. Acute phase response in animals: A review. Comp. Med. 59, 517–526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Field, K. A. et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown myotis. PLoS Pathog. 11(10), e1005168 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 58.

    Costantini, D., Dell’Ariccia, G. & Lipp, H.-P. Long flights and age affect oxidative status of homing pigeons (Columba livia). J. Exp. Biol. 211, 377–381 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Kuznetsova, A., Brockhoff, P. B. & Bojesen Christensen, R. H. Package ‘lmerTest’. CRAN. https://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf (2019).

  • 60.

    Zeileis, A., Cribari-Neto, F., Gruen, B., Kosmidis, I., Simas, A. B., & Rocha, A. V. Package ‘betareg’. CRAN, https://cran.r-project.org/web/packages/betareg/betareg.pdf (2020).


  • Source: Ecology - nature.com

    The constraint of ignoring the subtidal water climatology in evaluating the changes of coralligenous reefs due to heating events

    Flowering season of vernal herbs is shortened at elevated temperatures with reduced precipitation in early spring