in

The impact of cultivation systems on the nutritional and phytochemical content, and microbiological contamination of highbush blueberry

  • 1.

    Brazelton, C. An overview of global blueberry production in 2016. World Blueberry Statistics & Intelligence Report Global Summary. International Blueberry Organization. Preprint at https://www.internationalblueberry.org/library/ (2017).

  • 2.

    Farneti, B. et al. Exploring blueberry aroma complexity by chromatographic and direct-injection spectrometric techniques. Front. Plant Sci. 8, 617 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Anand, S. P. & Sati, N. Artificial preservatives and their harmful effects: Looking toward nature for safer alternatives. Int. J. Pharm. Sci. Res. 4, 2496–2501 (2013).

    Google Scholar 

  • 4.

    Bennett, J. W. & Klich, M. Mycotoxins. Clin. Microbiol. Rev. 16, 497–516 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Ochmian, I., Kozos, K., Chelpinski, P. & Szczepanek, M. Comparison of berry quality in highbush blueberry cultivars grown according to conventional and organic methods. Turk. J. Agric. For. 39, 174–181 (2015).

    CAS  Article  Google Scholar 

  • 6.

    Ochmian, I., Oszmiański, J., Jaśkiewicz, B. & Szczepanek, M. Soil and highbush blueberry responses to fertilization with urea phosphate. Folia Hort. 30, 295–305 (2018).

    Article  Google Scholar 

  • 7.

    Serna-Jimenez, J. A., Quintanilla-Carvajal, M. X., Rodriguez, J. M., Uribe, M. A. & Klotz, B. Development of a combined temperature and pH model and the use of bioprotectants to control of Mucor circinelloides. Am. J. Food. Technol. 11, 21–28 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Mijowska, K., Ochmian, I. & Oszmiański, J. Rootstock effects on polyphenol content in grapes of ‘Regent’ cultivated under cool climate condition. J. Appl. Bot. Food Qual. 90, 159–164 (2017).

    CAS  Google Scholar 

  • 9.

    Caruso, F. L. & Ramsdell, D. C. Compendium of blueberry and cranberry diseases. 1st ed. ISBN-0890541736 (American Phytopathological Society, February 15, 1995).

  • 10.

    Koyshibayev, M. & Muminjanov, H. Monitoring Diseases, Pests, and Weeds in cereal crops. Food and Agriculture Organizationof the United Nations. ISBN 978-92-5-109180-7. Preprint at https://www.fao.org/3/a-i5550e.pdf (2016).

  • 11.

    Drusch, S. & Ragab, W. Mycotoxins in fruits, fruit juices and dried fruits. J. Food Prot. 66, 1514–1527 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Fernández-Cruz, M. L., Mansilla, M. L. & Tadeo, J. L. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications. J. Adv. Res. 1, 113–122 (2010).

    Article  Google Scholar 

  • 13.

    Tournas, V. & Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 105, 11–17 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Barrau, C., de los Santos, B. & Romero, F. Susceptibility of southern highbush and rabbiteye blueberry cultivars to postharvest diseases in Huelva, Spain. Acta Hortic. 715, 525–530 (2006).

  • 15.

    Wright, E. R., Rivera, M. C., Esperon, J., Cheheid, A. & Codazzi, A. R. Alternaria leaf spot, twig blight, and fruit rot of highbush blueberry in Argentina. Plant Dis. 88, 1383–1383 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Frąc, M., Hannula, S. E., Bełka, M. & Jędryczka, M. Fungal biodiversity and their role in soil health. Front. Microbiol. 9, 707 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Bensch, K. et al. Common but different: The expanding realm of Cladosporium open access. Stud. Mycol. 82, 23–74 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Conserv. 122, 113–130 (2005).

    Article  Google Scholar 

  • 19.

    Erisman, J. W. et al. Agriculture and biodiversity: A better balance benefits both. AIMS Agric. Food. 1, 157–174 (2016).

    Article  Google Scholar 

  • 20.

    Kućmierz, J., Nawrocki, J. & Sojka, A. Fungi isolated from diseased early green fruits and fruits of blueberry (Vaccinium corymbosum L.). Prog. Plant Prot. 53, 779–784 (2013).

    Google Scholar 

  • 21.

    Teillard, F. et al. A review of indicators and methods to assess biodiversity – Application to livestock production at global scale. Livestock Environmental Assessment and Performance (LEAP) Partnership. FAO, Rome, Italy. Preprint at https://www.fao.org/3/a-av151e.pdf (2016).

  • 22.

    Sheoran, H. S., Phogat, V. K., Dahiya, R. & Gera, R. Long term effect of farming practiceson microbial biomass carbon, enzyme activities and microbial populations in different textured soils. Appl. Ecol. Environ. Res. 16, 3669–3689 (2018).

    Article  Google Scholar 

  • 23.

    Bagyaraj, D. J. & Ashwin, R. Soil biodiversity: Role in sustainable horticulture. In Biodiversity in Horticultural Crops (ed. Peter, K. V.) 5–6 (Daya Publishing House, New Delhi, 2017).

    Google Scholar 

  • 24.

    Reboud, X., Eychenne, N., Délos, M. & Folcher, L. Withdrawal of maize protection by herbicides and insecticides increases mycotoxins contamination near maximum thresholds. Agron. Sustain. Dev. 36, 43 (2016).

    Article  CAS  Google Scholar 

  • 25.

    Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Alshannaq, A. & Уu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health. 14, 632 (2017).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 27.

    Petruzzi, L. et al. In vitro removal of ochratoxin a by two strains of Saccharomyces cerevisiae and their performances under fermentative and stressing conditions. J. Appl. Microbiol. 116, 60–70 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Zhu, R. et al. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem. 179, 1–5 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Chi, Z. et al. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 82, 793–804 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Gindro, K. & Pezet, R. Purification and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers: Fr. FEMS Microbiol. Lett. 171, 239–243 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Jiang, H., Sun, Z., Jia, R., Wang, X. & Huang, J. Effect of Chitosan as an antifungal and preservative agent on postharvest blueberry. J. Food Qual. 39, 516–523 (2016).

    CAS  Article  Google Scholar 

  • 32.

    Ochmian, I. & Kozos, K. Influence of foliar fertilisation with calcium fertilisers on the firmness and chemical composition of two highbush blueberry cultivars. J. Elem. 20, 185–201 (2015).

    Google Scholar 

  • 33.

    Kozos, K. & Ochmian, I. The influence of fertilisation urea phosphate on growth and yielding bush of two highbush blueberry cultivars (V. corymbosum). Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc Zootech. 37, 29–38 (2016).

    Article  Google Scholar 

  • 34.

    Ochmian, I., Grajkowski, J. & Skupień, K. Influence of substrate on yield and chemical composition of highbush blueberry fruit cv. ‘Sierra’. J. Fruit Ornam. Plant Res. 17, 89–100 (2009).

    CAS  Google Scholar 

  • 35.

    Jiang, Y., Li, Y., Zeng, Q., Wei, J. & Yu, H. The effect of soil pH on plant growth, leaf chlorophyll fluorescence and mineral element content of two blueberries. Acta Hortic. 1180, 269–276 (2017).

    Article  Google Scholar 

  • 36.

    Pospieszny, H. Systemic Acquired Resistance (SAR) in integrated plant protection. Prog. Plant Prot. 56(4), 436–442 (2016).

    Google Scholar 

  • 37.

    Fallahi, E., Conway, W. S., Hickey, K. D. & Sams, C. E. The role of calcium and nitrogen inpostharvest quality and disease resistance of apples. HortScience 32, 831–835 (1997).

    CAS  Article  Google Scholar 

  • 38.

    Malakouti, M. J., Tabatabaei, S. J., Shahabil, A. & Fallahi, E. Effects of calcium chloride on apple fruit quality of trees grown in calcareous soil. J. Plant. Nutr. 22, 1451–1456 (1999).

    CAS  Article  Google Scholar 

  • 39.

    Ochmian, I. et al. The feasibility of growing highbush blueberry (V. corymbosum L.) on loamy calcic soil with the use of organic substrates. Sci. Hortic. 257, 108690 (2019).

    CAS  Article  Google Scholar 

  • 40.

    Chiabrando, V. & Giacalone, G. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 66, 248–253 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Chiabrando, V., Peano, C., Beccaro, G., Bounous, G. & Rolle, L. Postharvest quality of highbush blueberry (Vaccinium corymbosum L.) cultivars in relation to storage methods. Acta Hort. 715, 545–551 (2006).

    Article  Google Scholar 

  • 42.

    Shiono, M., Matsugaki, N. & Takeda, K. Structure of the blue cornflower pigment. Nature 436, 791–791 (2005).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 43.

    Ścibisz, I., Kalisz, S. & Mitek, M. Thermal degradation of anthocyanins in blueberry fruit. Zywnosc Nauka Technologia Jakosc 17, 56–66 (2010).

  • 44.

    Seeram, N. P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 56, 627–629 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Wolfe, K. L. et al. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 56, 8418–8426 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Ribera, A. E., Reyes-Diaz, M., Alberdi, M., Zuñiga, G. E. & Mora, M. L. Antioxidant compounds in skin and pulp of fruits change among genotypes and maturity stages in highbush blueberry (Vaccinium corymbosum L.) grown in southern Chile. J. Soil Sci. Plant Nutr. 10, 509–536 (2010).

    Article  Google Scholar 

  • 47.

    Wojciechowska, R. Accumulation of nitrates and quality of horticultural products. Pub. Coperite, Kraków, Poland, 21–27 (2005).

  • 48.

    Rozek, S. Factors affecting the accumulation of nitrate in vegetable yields. Zesz. Nauk. AR Krak. Ses. Nauk. 71, 19–31 (2000).

    Google Scholar 

  • 49.

    Regulation (EC) no 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin andamending Council Directive 91/414/EEC -OJ L70. 16.3.2005 (2005).

  • 50.

    Connor, A. M., Luby, J. J., Hancock, J. F., Berkheimer, S. & Hanson, E. J. Changes in fruit antioxidant activity among blue-berry cultivars during cold-temperature storage. J. Agric. Food Chem. 50, 893–898 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Rodrigues, E. et al. Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci. Technol. 31, 911–917 (2011).

    Article  Google Scholar 

  • 52.

    Koca, I. & Karadeniz, B. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. 121, 447–450 (2009).

    CAS  Article  Google Scholar 

  • 53.

    McDougall, G. J. et al. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 53, 2760–2766 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Lachowicz, S., Wiśniewski, R., Ochmian, I., Drzymała, K. & Pluta, S. Anti-microbiological, anti-hyperglycemic and anti-obesity potency of natural antioxidants in fruit fractions of saskatoon berry. Antioxidants. 8, 397 (2019).

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  • 55.

    Johnson, M. H., Lucius, A., Meyer, T. & de Mejia, E. G. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). J. Agric. Food Chem. 59, 8923–8930 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Hodges, D. M., Lester, G. E., Munro, K. D. & Toivonen, P. M. Oxidative stress: Importance for postharvest quality. Hort. Sci. 39, 924–929 (2004).

    CAS  Article  Google Scholar 

  • 57.

    Okan, O. T. et al. Antioxidant activity, sugar content and phenolic p rofiling of blueberries cultivars: A comprehensive comparison. Not. Bot. Horti. Agrobot. Cluj. Napoca. 46, 639–652 (2018).

    CAS  Article  Google Scholar 

  • 58.

    Raghvendra, V. S. et al. Chemical and potential aspects of anthocyanins—A water-soluble vacuolar flavonoid pigments: A review. Int. J. Pharm. Sci. Rev. Res. 6, 28–33 (2011).

    CAS  Google Scholar 

  • 59.

    Silva, S., Costa, E. M., Coelho, M. C., Morais, R. M. & Pintado, M. E. Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (Vaccinium corymbosum L) cultivars. Nat. Prod. Res. 31, 93–98 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Carbonaro, M., Mattera, M., Nicoli, S., Bergamo, P. & Cappelloni, M. Modulation of antioxidant compounds in organic vs conventional fruit (peach, Prunus persica L., and pear, Pyrus communis L.). J. Agric. Food Chem. 50, 5458–5462 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Reque, P. M. et al. Cold storage of blueberry (Vaccinium spp.) fruits and juice: anthocyanin stability and antioxidant activity. J. Food Compos. Anal. 33, 111–116 (2013).

    Article  CAS  Google Scholar 

  • 62.

    Schaefer, H. M., Rentzsch, M. & Breuer, M. Anthocyanins reduce fungal growth in fruits. Nat. Prod. Commun. 3, 1267–1272 (2008).

    CAS  Google Scholar 

  • 63.

    Huang, H. T. Decolorization of anthocyanins by fungal enzymes. J. Agric. Food Chem. 3, 141–146 (1955).

    CAS  Article  Google Scholar 

  • 64.

    Keppler, K. & Humpf, H. U. Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 13, 5195–5205 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Miyahara, M. et al. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl. Environ. Microbiol. 76, 4619–4625 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Borowik, A., Wyszkowska, J., Gałązka, A. & Kucharski, J. Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil. Environ. Sci. Pollut. R. 23, 1–14 (2019).

    Google Scholar 

  • 67.

    Connor, A. M., Luby, J. J. & Tong, C. Genotype and environmental variation in antioxidant activity, total phenolic content, and anthocyanin content among blueberry cultivars. J. Am. Soc. Hortic. Sci. 127, 89–97 (2002).

    CAS  Article  Google Scholar 

  • 68.

    Krupa, T. & Tomala, K. Antioxidant capacity, anthocyanin content profile in ‘Bluecrop’ blueberry fruit. Veg. Crops Res. Bull. 66, 129–141 (2007).

    Google Scholar 

  • 69.

    Kozos, K., Ochmian, I. & Chełpiński, P. The effects of rapid chilling and storage conditions on the quality of Brigitta Blue cultivar highbush blueberries (Vaccinium corymbosum L.). Folia Hortic. 26, 147–153 (2014).

    Article  Google Scholar 

  • 70.

    Anonymous. Microbiology of food and animal feeding stuffs – Horizontal method for the enumeration of yeasts and moulds. Part 1: Colony count technique in products with water activity greater than 0.95. ISO 21527-1:2008. 1st edn (International Organization for Standardization, Geneva, Switzerland, 2008).

  • 71.

    Ulbin-Figlewicz, N., Jarmoluk, A. & Marycz, K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann. Microbiol. 65, 1537–1546 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Sandhya Deepika, D. & Laxmi Sowmya, K. Bioindices of bacterial communities. Int. J. Curr. Microbiol. App. Sci. 5, 219–233 (2016).

    Article  Google Scholar 

  • 73.

    Ochmian, I., Oszmiański, J., Lachowicz, S. & Krupa-Małkiewicz, M. Rootstock effect on physico-chemical properties and content of bioactive compounds of four cultivars Cornelian cherry fruits. Sci. Hortic. 256, 108588 (2019).

    CAS  Article  Google Scholar 

  • 74.

    Podsedek, A., Majewska, I., Redzynia, M., Sosnowska, D. & Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 62, 4610–4617 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Nickavar, B. & Уousefian, N. Evaluation of α-amylase inhibitory activities of selected antidiabetic medicinal plants. J. Verbrauch Lebensm. 6, 1915 (2011).

    Article  Google Scholar 

  • 76.

    Arnao, M. B., Cano, A. & Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73, 239–244 (2001).

    CAS  Article  Google Scholar 

  • 77.

    Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 28, 25–30 (1995).

    CAS  Article  Google Scholar 

  • 78.

    Mijowska, K., Ochmian, I. & Oszmiański, J. Impact of cluster zone leaf removal on grapes cv. regent polyphenol content by the UPLC-PDA/MS method. Molecules 21, 1688 (2016).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 79.

    Błajet-Kosicka, A., Twarużek, M., Kosicki, R., Sibiorowska, E. & Grajewski, J. Co-occurrence and evaluation of mycotoxins in organic and conventional rye grain and products. Food Control 38, 61–66 (2014).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Acidobacteria are active and abundant members of diverse atmospheric H2-oxidizing communities detected in temperate soils

    Undergraduates ramp up research during pandemic diaspora