in

The influence of climate variability on demographic rates of avian Afro-palearctic migrants

  • 1.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  • 2.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214. https://doi.org/10.1126/science.aai9214 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Pearce-Higgins, J. W., Eglington, S. M., Martay, B. & Chamberlain, D. E. Drivers of climate change impacts on bird communities. J. Anim. Ecol. 84, 943–954 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).

    Article  Google Scholar 

  • 5.

    Wilcove, D. S. & Wikelski, M. Going, going, gone: Is animal migration disappearing. PLoS Biol. 6, e188. https://doi.org/10.1371/journal.pbio.0060188 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Koleček, J., Procházka, P., Ieronymidou, C., Burfield, I. J. & Reif, J. Non-breeding range size predicts the magnitude of population trends in trans-Saharan migratory passerine birds. Oikos 127, 599–606 (2018).

    Article  Google Scholar 

  • 7.

    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552. https://doi.org/10.1098/rsbl.2015.0552 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Jiguet, F. et al. Population trends of European common birds are predicted by characteristics of their climatic niche. Global Change Biol. 16, 497–505 (2010).

    ADS  Article  Google Scholar 

  • 10.

    Eglington, S. M. et al. Latitudinal gradients in the productivity of European migrant warblers have not shifted northwards during a period of climate change. Global Ecol. Biogeogr. 24, 427–436 (2015).

    Article  Google Scholar 

  • 11.

    Meller, K., Piha, M., Vähätalo, A. V. & Lehikoinen, A. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone. Oecologia 186, 883–893 (2018).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Townsend, A. K. et al. Warm springs, early lay dates, and double brooding in a North American migratory songbird, the Black-Throated Blue Warbler. PLoS ONE 8, e59467. https://doi.org/10.1371/journal.pone.0059467 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Whittaker, R. J., Nogués-Bravo, D. & Araújo, M. B. Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Global Ecol. Biogeogr. 16, 76–89 (2007).

    Article  Google Scholar 

  • 14.

    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).

    ADS  Article  Google Scholar 

  • 16.

    Donnelly, A., Yu, R. & Liu, L. Trophic level responses differ as climate warms in Ireland. Int. J. Biometeorol. 59, 1007–1017 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Ross, M. V., Alisauskas, R. T., Douglas, D. C. & Kelletti, D. K. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ecology 98, 1869–1883 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomassphenology due to climate change and its impact on the breeding biology of aninsectivorous bird. Oecologia 147, 164–172 (2006).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Samplonius, J. M., Kappers, E. F., Brands, S. & Both, C. Phenological mismatch and ontogenetic diet shifts interactively affect offspring condition in a passerine. J. Anim. Ecol. 85, 1255–1264 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Finch, T., Pearce-Higgins, J., Leech, D. I. & Evans, K. Carry-over effects from passage regions are more important than breeding climate in determining the breeding phenology and performance of three avian migrants of conservation concern. Biodivers. Conserv. 23, 2427–2444 (2014).

    Article  Google Scholar 

  • 21.

    Both, C., Ubels, R. & Ravussin, P.-A. Life-history innovation to climate change: can single-brooded migrant birds become multiple breeders?. J. Avian Biol. 50, 01951. https://doi.org/10.1111/jav.01951 (2019).

    Article  Google Scholar 

  • 22.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biol. 20, 2221–2229 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Ambrosini, R., Saino, N., Rubolini, D. & Møller, A. P. Higher degree-days at the time of breeding predict size of second clutches in the barn swallow. Clim. Res. 50, 43–50 (2011).

    Article  Google Scholar 

  • 24.

    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479 (2015).

    Article  Google Scholar 

  • 25.

    Saino, N. et al. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. B. 278, 835–842 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Winstanley, D., Spencer, R. & Williamson, K. Where have all the Whitethroats gone?. Bird Study 21, 1–14 (1974).

    Google Scholar 

  • 27.

    Peach, W. J., Baillie, S. R. & Balmer, D. E. Survival of British Sedge Warblers Acrocephalus schoenobaenus in relation to west African rainfall. Ibis 133, 300–305 (1991).

    Article  Google Scholar 

  • 28.

    Johnston, A. et al. Survival of Afro-Palaearctic passerine migrants in western Europe and the impacts of seasonal weather variables. Ibis 158, 465–480 (2016).

    Article  Google Scholar 

  • 29.

    Norris, D. R. & Marra, P. P. Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 109, 535–547 (2007).

    Article  Google Scholar 

  • 30.

    Gordo, O. & Sanz, J. J. The relative importance of conditions in wintering and passage areas on spring arrival dates: the case of long-distance Iberian migrants. J. Ornith. 149, 199–210 (2008).

    Article  Google Scholar 

  • 31.

    Saino, N. et al. Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Clim. Res. 35, 123–134 (2007).

    Article  Google Scholar 

  • 32.

    Smith, R. J. & Moore, F. R. Arrival fat and reproductive performance in a long-distance passerine migrant. Oecologia 134, 325–331 (2003).

    ADS  PubMed  Article  Google Scholar 

  • 33.

    Norman, D. & Peach, W. J. Density-dependent survival and recruitment in a long-distance Palaearctic migrant, the Sand Martin Riparia riparia. Ibis 155, 284–296 (2013).

    Article  Google Scholar 

  • 34.

    Nicholson, S. E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Change 26, 137–158 (2000).

    ADS  Article  Google Scholar 

  • 35.

    Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).

    Article  Google Scholar 

  • 36.

    Post, E. & Forchhammer, M. C. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. B. 363, 2369–2375 (2008).

    Article  Google Scholar 

  • 37.

    Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. U. S. A. 105, 16195–16200 (2008).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Sanz, J. J., Potti, J., Moreno, J., Merino, S. & Frías, O. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol. 9, 461–472 (2003).

    ADS  Article  Google Scholar 

  • 40.

    Skwarska, J. et al. Long-term variation in laying date and clutch size of Pied Flycatchers Ficedula hypoleuca in central Poland. Pol. J. Ecol. 60, 187–192 (2012).

    Google Scholar 

  • 41.

    González-Braojos, S., Jose Sanz, J. & Moreno, J. Decline of a montane Mediterranean pied flycatcher Ficedula hypoleuca population in relation to climate. J. Avian Biol. 48, 1383–1393 (2017).

    Article  Google Scholar 

  • 42.

    Suryan, R. M., Irons, D. B., Brown, E. D., Jodice, P. G. R. & Roby, D. D. Site-specific effects on productivity of an upper trophic-level marine predator: bottom-up, top-down, and mismatch effects on reproduction in a colonial seabird. Prog. Oceanogr. 68, 303–328 (2006).

    ADS  Article  Google Scholar 

  • 43.

    Gaston, A. J., Gilchrist, H. G., Mallory, M. L. & Smith, P. A. Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111, 111–119 (2009).

    Article  Google Scholar 

  • 44.

    Ramírez, F. et al. Oceanographic drivers and mistiming processes shape breeding success in a seabird. Proc. R. Soc. B 283, 20152287. https://doi.org/10.1098/rspb.2015.2287 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Doiron, M., Gauthier, G. & Lévesque, E. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Glob. Chang. Biol. 21, 4364–4376 (2015).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zoo. 90, 961–971 (2012).

    Article  Google Scholar 

  • 47.

    Bowers, E. K. et al. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Ecology 97, 2880–2891 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Charmentier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    ADS  Article  CAS  Google Scholar 

  • 49.

    Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Climatic Change 159, 177–194 (2020).

    ADS  Article  Google Scholar 

  • 50.

    Rubolini, D., Saino, N. & Møller, A. P. Migratory behaviour constrains the phenological response of birds to climate change. Clim. Res. 42, 45–55 (2010).

    Article  Google Scholar 

  • 51.

    Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).

    ADS  Article  Google Scholar 

  • 52.

    Kolarova, E. & Adamik, P. Bird arrival dates in Central Europe based on one of the earliest phenological networks. Clim. Res. 63, 91–98 (2015).

    Article  Google Scholar 

  • 53.

    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among European bird species. Clim. Res. 35, 135–146 (2007).

    Article  Google Scholar 

  • 54.

    Reed, T. E., Grøtan, V., Jenouvrier, S., Sæther, B.-E. & Visser, M. E. Population growth in a wild bird is buffered against phenological mismatch. Science 340, 488–491 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Mallord, J. W. et al. Diet flexibility in a declining long-distance migrant may allow it to escape the consequences of phenological mismatch with its caterpillar food supply. Ibis 159, 76–90 (2017).

    Article  Google Scholar 

  • 56.

    Simmonds, E. G., Sheldon, B. C., Coulson, T. & Cole, E. F. Incubation behavior adjustments, driven by ambient temperature variation, improve synchrony between hatch dates and caterpillar peak in a wild bird population. Ecol. Evol. 7, 9415–9425 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Change Biol. 24, 823–835 (2018).

    ADS  Article  Google Scholar 

  • 58.

    Vatka, E., Rytkonen, S. & Orell, M. Does the temporal mismatch hypothesis match in boreal populations?. Oecologia 176, 595–605 (2014).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Eeva, T., Lehikoinen, E., Rönkä, M., Lummaa, V. & Currie, D. Different responses to cold weather in two pied flycatcher populations. Ecography 25, 705–713 (2002).

    Article  Google Scholar 

  • 60.

    McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. 3, 1816. https://doi.org/10.1038/srep01816 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Wittwer, T., O’Hara, R. B., Caplat, P., Hickler, T. & Smith, H. G. Long-term population dynamics of a migrant bird suggests interaction of climate change and competition with resident species. Oikos 124, 1151–1159 (2015).

    Article  Google Scholar 

  • 62.

    Wiebe, K. L. Interspecific competition for nests: Prior ownership trumps resource holding potential for Mountain Bluebird competing with Tree Swallow. Auk 133, 512–519 (2016).

    Article  Google Scholar 

  • 63.

    Ahola, M. P., Laaksonen, T., Eeva, T. & Lehikoinen, E. Climate change can alter competitive relationships between resident and migratory birds. J. Anim. Ecol. 76, 1045–1052 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Wesolowski, T. Primeval conditions—what can we learn from them?. Ibis 149, 64–77 (2007).

    Article  Google Scholar 

  • 66.

    Adamík, P. & Král, M. Climate-and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J. Zool. 275, 209–215 (2008).

    Article  Google Scholar 

  • 67.

    Ӧberg, M. et al. Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecol. Evol. 5, 345–356 (2015).

    Article  Google Scholar 

  • 68.

    Mazer, S. J., Gerst, K. L., Matthews, E. R. & Evenden, A. Species-specific phenological responses to winter temperature and precipitation in a waterlimited ecosystem. Ecosphere 6, 1–27 (2015).

    Article  Google Scholar 

  • 69.

    Morrison, C. A., Robinson, R. A., Butler, S. J., Clark, J. A. & Gill, J. A. Demographic drivers of decline and recovery in an Afro-Palaearctic migratory bird population. Proc. R. Soc. B 283, 20161387. https://doi.org/10.1098/rspb.2016.1387 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).

    Article  Google Scholar 

  • 71.

    Zwarts, L., Bijlsma, R. G., van der Kamp, J. & Wymenga, E. Living on the Edge: Wetlands and Birds in a Changing Sahel (Zeist, KNNV Uitgeveri, 2009).

    Google Scholar 

  • 72.

    Tøttrup, A. P. et al. Drought in Africa caused delayed arrival of European songbirds. Science 338, 1307–1307 (2012).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 73.

    Woodworth, B. K., Wheelwright, N. T., Newman, A. E., Schaub, M. & Norris, D. R. Winter temperatures limit population growth rate of a migratory songbird. Nature Commun. 8, 14812. https://doi.org/10.1038/ncomms14812 (2017).

    ADS  CAS  Article  Google Scholar 

  • 74.

    Calvert, A. M., Walde, S. J. & Taylor, P. D. Nonbreeding-season drivers of population dynamics in seasonal migrants: conservation parallels across taxa. Avian Conserv. Ecol. 4, 5–5 (2009).

    Article  Google Scholar 

  • 75.

    Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156, 493–510 (2014).

    Article  Google Scholar 

  • 76.

    Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).

    PubMed  Article  Google Scholar 

  • 77.

    Cepák, J. et al. (eds) Czech and Slovak Bird Migration Atlas (Aventinum, 2008).

  • 78.

    Šťastný, K. & Hudec, K. (eds) Fauna of the Czech Republic. Birds III. (Academia, 2011).

  • 79.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Anonymus. Metodický předpis č. 10: Návod pro činnost fenologických stanic. Lesní rostliny[Methodical instruction No.10: Instructions for phenological stations. Wild plants] (ČHMÚ, 2009).

  • 81.

    Šímová, I. & Storch, D. The enigma of terrestrial primary productivity: measurements, models, scales and the diversity-productivity relationship. Ecography 40, 239–252 (2017).

    Article  Google Scholar 

  • 82.

    Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007)

  • 83.

    Mu, Q. Z., Zhao, M. S. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    ADS  Article  Google Scholar 

  • 84.

    Adamík, P. et al. Barrier crossing in small avian migrants: individual tracking reveals prolonged nocturnal flights into the day as a common migratory strategy. Sci. Rep. 6, 21560. https://doi.org/10.1038/srep21560 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Koleček, J. et al. Cross-continental migratory connectivity and spatiotemporal migratory patterns in the great reed warbler. J. Avian Biol. 47, 756–767 (2016).

    Article  Google Scholar 

  • 86.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Article  Google Scholar 

  • 87.

    R Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (2016).

  • 88.

    Kéry, M. & Royle, J. A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Volume 1: Prelude and Static Models. (Academic, 2016)

  • 89.

    Grosbois, V. et al. Assessing the impact of climate variation on survival in vertebrate populations. Biol. Rev. 83, 357–399 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Pradel, R., Hines, J. E., Lebreton, J. D. & Nichols, J. D. Capture-recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).

    MATH  Article  Google Scholar 

  • 91.

    Laake, J. L. RMark: An R Interface for Analysis of Capture-recapture Data with MARK (AFSC Processed Rep., 2013).

  • 92.

    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    MATH  Article  Google Scholar 

  • 93.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    Google Scholar 

  • 94.

    Westoby, M., Leishman, M. & Lord, J. Further remarks on phylogenetic correction. J. Ecol. 83, 727–729 (1995).

    Article  Google Scholar 

  • 95.

    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).

    Article  Google Scholar 

  • 96.

    Reif, J., Telenský, T., Klvaňa, P., Jelínek, M. & Cepák, J. Data from: The influence of climate variability on demographic rates of avian Afro-palearctic migrants. Dryad. https://doi.org/10.5061/dryad.x95x69pgf (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya