in

The Intercontinental phylogeography of neustonic daphniids

  • 1.

    Carpenter, S. R., Fisher, S. G., Grimm, N. B. & Kitchell, J. F. Global change and freshwater ecosystems. Annu. Rev. Ecol. Syst. 23, 119–139 (1992).

    • Article
    • Google Scholar
  • 2.

    Vincent, W. F. & Pienitz, R. Sensitivity of high-latitude freshwater ecosystems to global change: temperature and solar ultraviolet radiation. Geoscience Canada 23, 231–236 (1996).

    • Google Scholar
  • 3.

    Ormerod, S. J., Dobson, M., Hildrew, A. G. & Townsend, C. Multiple stressors in freshwater ecosystems. Freshwat. Biol. 55, 1–4 (2010).

    • Article
    • Google Scholar
  • 4.

    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil. Trans. R. Soc. B: Biol. Sci. 365, 2093–2106 (2010).

    • Article
    • Google Scholar
  • 5.

    Lee, S. J., Kim, J. H. & Lee, S. C. Effects of oil-film layer and surfactant on the siphonal respiration and survivorship in the fourth instar larvae of Aedes togoi mosquito in laboratory conditions. Sci. Rep. 8, 5694 (2018).

  • 6.

    Dumont, H. J. & Pensaert, J. A revision of the Scapholeberinae (Crustacea: Cladocera). Hydrobiologia 100, 3–45 (1983).

    • Article
    • Google Scholar
  • 7.

    Elmoor-Loureiro, L. Ocorrência de Scapholeberis armata freyi Dumont & Pensaert (Crustacea, Anomopoda, Daphniidae) no estado de São Paulo, Brasil. Rev. Bras. Zool. 17, 301–302 (2000).

    • Article
    • Google Scholar
  • 8.

    Quiroz-Vazquez, P. & Elias-Gutierrez, M. A new species of the freshwater cladoceran genus Scapholeberis Schoedler, 1858 (Cladocera: Anomopoda) from the semidesert northern Mexico, highlighted by DNA barcoding. Zootaxa 2236, 50–64 (2009).

    • Article
    • Google Scholar
  • 9.

    Green, J. Seasonal polymorphism in Scapholebris mucronata (O. F. Muller) (Crustacea: Cladocera). J. Anim. Ecol. 32, 425–439 (1963).

    • Article
    • Google Scholar
  • 10.

    Fryer, G. Functional-Morphology and the Adaptive Radiation of the Daphniidae (Branchipoda, Anomopoda). Phil. Trans. R. Soc. London. Ser. B – Biol. Sci. 331, 1–99 (1991).

  • 11.

    Alonso, M. Crustacea, Branchiopoda. 1996 edn, Vol. 7 (Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Cientfficas (CSIC), 1996).

  • 12.

    Zawisza, E., Zawiska, I. & Correa-Metrio, A. Cladocera community composition as a function of physicochemical and morphological parameters of dystrophic lakes in NE Poland. Wetlands 36, 1131–1142 (2016).

    • Article
    • Google Scholar
  • 13.

    Swain, T. D. & Taylor, D. J. Structural rRNA characters support monophyly of raptorial limbs and paraphyly of limb specialization in water fleas. Proc. R. Soci. London Ser. B-Biol. Sci. 270, 887–896 (2003).

  • 14.

    Cornetti, L., Fields, P. D., Van Damme, K. & Ebert, D. A fossil-calibrated phylogenomic analysis of Daphnia and the Daphniidae. Mol. Phyl. Evol. 137, 250–262, https://doi.org/10.1016/j.ympev.2019.05.018 (2019).

    • Article
    • Google Scholar
  • 15.

    Schwentner, M., Richter, S., Rogers, D. C. & Giribet, G. Tetraconatan phylogeny with special focus on Malacostraca and Branchiopoda: highlighting the strength of taxon-specific matrices in phylogenomics. Proc. Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1524 (2018).

  • 16.

    Bekker, E. I., Kotov, A. A. & Taylor, D. J. A revision of the subgenus Eurycercus (Eurycercus) Baird, 1843 emend. nov.(Cladocera: Eurycercidae) in the Holarctic with the description of a new species from Alaska. Zootaxa 3206, 1–40 (2012).

    • Article
    • Google Scholar
  • 17.

    Belyaeva, M. & Taylor, D. J. Cryptic species within the Chydorus sphaericus species complex (Crustacea: Cladocera) revealed by molecular markers and sexual stage morphology. Mol. Phylogen. Evol. 50, 534–546 (2009).

  • 18.

    Faustova, M., Sacherovà, V., Svensson, J.-E. & Taylor, D. J. Radiation of European Eubosmina (Cladocera) from Bosmina (E.) longispina—concordance of multipopulation molecular data with paleolimnology. Limnol. Oceanogr. 56, 440–450 (2011).

  • 19.

    Millette, K. L., Xu, S., Witt, J. D. & Cristescu, M. E. Pleistocene‐driven diversification in freshwater zooplankton: Genetic patterns of refugial isolation and postglacial recolonization in Leptodora kindtii (Crustacea, Cladocera). Limnol. Oceanogr. 56, 1725–1736 (2011).

  • 20.

    Xu, S., Hebert, P., Kotov, A. & Cristescu, M. The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761)(Crustacea, Onychopoda). Mol. Ecol. 18, 5161–5179 (2009).

  • 21.

    Kotov, A. A. & Taylor, D. J. Contrasting endemism in pond-dwelling cyclic parthenogens: the Daphnia curvirostris species group (Crustacea: Cladocera). Sci. Rep. 9, 6812, https://doi.org/10.1038/s41598-019-43281-9 (2019).

  • 22.

    Bur, M. T., Klarer, D. M. & Krieger, K. A. First records of a European cladoceran, Bythotrephes cederstroemi, in lakes Erie and Huron. J. Great Lakes Res. 12, 144–146 (1986).

    • Article
    • Google Scholar
  • 23.

    Crease, T. J., Omilian, A. R., Costanzo, K. S. & Taylor, D. J. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS One 7, e46620 (2012).

  • 24.

    Demelo, R. & Hebert, P. D. Founder effects and geographical variation in the invading cladoceran Bosmina (Eubosmima) coregoni Baird 1857 in North America. Heredity 73, 490 (1994).

    • Article
    • Google Scholar
  • 25.

    Havel, J. E. & Hebert, P. D. Daphnia lumholtzi in North America: another exotic zooplankter. Limnol. Oceanogr. 38, 1823–1827 (1993).

  • 26.

    Karabanov, D. P., Bekker, E. I., Shiel, R. J. & Kotov, A. A. Invasion of a Holarctic planktonic cladoceran Daphnia galeata Sars (Crustacea: Cladocera) in the Lower Lakes of South Australia. Zootaxa 4402, 136–148 (2018).

    • Article
    • Google Scholar
  • 27.

    Kotov, A. A. & Taylor, D. J. Daphnia lumholtzi Sars, 1885 (Cladocera: Daphniidae) invades Argentina. J. Limnol. 73 (2014).

  • 28.

    Evans, K. & Gaston, K. Can the evolutionary‐rates hypothesis explain species‐energy relationships? Funct. Ecol. 19, 899–915 (2005).

    • Article
    • Google Scholar
  • 29.

    Williamson, C. E., Stemberger, R. S., Morris, D. P., Frost, T. M. & Paulsen, S. G. Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol. Oceanogr. 41, 1024–1034 (1996).

  • 30.

    Sinha, R. P. & Häder, D.-P. UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences 1, 225–236 (2002).

  • 31.

    Chung, L. H. & Murray, V. An extended sequence specificity for UV-induced DNA damage. J. Photochem. Photobiol. B: Biol. 178, 133–142 (2018).

  • 32.

    Miner, B. E., Kulling, P. M., Beer, K. D. & Kerr, B. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature. Mol. Ecol. 24, 6177–6187 (2015).

  • 33.

    Hebert, P. D. N. R. E. A. C. J. K. T. D. J. W. C. C. Accelerated molecular evolution in halophilic crustaceans. Evolution 56, 909 (2002).

  • 34.

    Weider, L. J. & Hobaek, A. Glacial refugia, haplotype distributions, and clonal richness of the Daphnia pulex complex in arctic Canada. Mol. Ecol. 12, 463–473 (2003).

  • 35.

    De Moor, F. & Ivanov, V. In Freshwater Animal Diversity Assessment 393–407 (Springer, 2007).

  • 36.

    Bolotov, I. N. et al. Taxonomy and distribution of freshwater pearl mussels (Unionoida: Margaritiferidae) of the Russian Far East. PLoS One 10, e0122408 (2015).

    • Article
    • Google Scholar
  • 37.

    Klimovsky, A., Bekker, E., Korovchinsky, N. & Kotov, A. Cladocera (Crustacea, Branchiopoda) of Central Yakutia: 1. Some Representatives of the Families Sididae, Daphniidae, and Ophryoxidae. Biol. Bull. 44, 656–671 (2017).

    • Article
    • Google Scholar
  • 38.

    Kotov, A. A., Jeong, H. G. & Lee, W. Cladocera (Crustacea: Branchiopoda) of the south-east of the Korean Peninsula, with twenty new records for Korea. Zootaxa 3368, 50–90 (2012).

    • Article
    • Google Scholar
  • 39.

    Katoh, K. & Standley, D. M. In MAFFT: iterative refinement and additional methods 131–146 (Springer, 2014).

  • 40.

    Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    • Article
    • Google Scholar
  • 41.

    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).

    • Article
    • Google Scholar
  • 42.

    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

  • 43.

    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452 (2018).

  • 44.

    Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X. & Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003).

  • 45.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).


  • Source: Ecology - nature.com

    Why recycling lighting waste in Australia is so important

    Evidence in the Japan Sea of microdolomite mineralization within gas hydrate microbiomes