in

The Jurassic magmatism of the Demerara Plateau (offshore French Guiana) as a remnant of the Sierra Leone hotspot during the Atlantic rifting

  • 1.

    Kumar, N. Origin of “paired” aseismic rises: Cearà and Sierra Leone rises in the Equatorial, and the Rio Grande Rise and Walvis Ridge in the South Atlantic. Marine Geology 30, 175–191, https://doi.org/10.1016/0025-3227(79)90014-8 (1979).

  • 2.

    Burke, K. & Torsvik, T. H. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle. Earth and Planetary Science Letters 227, 531–538, https://doi.org/10.1016/j.epsl.2004.09.015 (2004).

  • 3.

    Mercier de Lépinay, M. Inventaire mondial des marges transformantes et évolution tectono-sédimentaire des plateaux de Demerara et de Guinée. Ph. D. thesis, University of Perpignan, 335 p. (2016).

  • 4.

    Reuber, K. R., Pindell, J. & Horn, B. W. Demerara Rise, offshore Suriname: magma-rich segment of the Central Atlantic Ocean, and conjugate to the Bahamas hot spot. Interpretation 4, T141–T155, https://doi.org/10.1190/INT-2014-0246.1 (2016).

    • Article
    • Google Scholar
  • 5.

    Bryan, S. E. & Ernst, R. E. Revised definition of Large Igneous Province (LIPs). Earth-Science Reviews 86, 175–202, https://doi.org/10.1016/j.earscirev.2007.08.008 (2008).

  • 6.

    Basile, C., Girault, I., Heuret, A., Loncke, L. & Poetisi, E. DRADEM campaign, scientific report., https://hal.archives-ouvertes.fr/hal-01418119 (2016).

  • 7.

    Basile, C., Mascle, J. & Guiraud, R. Phanerozoic geological evolution of the Equatorial Atlantic domain. Journal of African Earth Sciences 43, 275–282, https://doi.org/10.1016/j.jafrearsci.2005.07.011 (2005).

  • 8.

    Labails, C., Olivet, J. L., Aslanian, D. & Roest, W. R. An alternative early opening scenario for the Central Atlantic Ocean. Earth Planet. Sci. Lett. 297, 355–368, https://doi.org/10.1016/j.epsl.2010.06.024 (2010).

  • 9.

    Benkhelil, J., Mascle, J. & Tricart, P. The Guinea continental margin: an example of a structurally complex transform margin. Tectonophysics 248, 117–137, https://doi.org/10.1016/0040-1951(94)00246-6 (1995).

  • 10.

    Basile, C. et al. Structure and evolution of the Demerara Plateau, offshore French Guiana: Rifting, tectonic inversion and post-rift tilting at transform-divergent margins intersection. Tectonophysics 591, 16–29, https://doi.org/10.1016/j.tecto.2012.01.010 (2013).

  • 11.

    Loncke, L. et al. Transform marginal plateaus. Earth-Science Reviews (in press)., https://doi.org/10.1016/j.earscirev.2019.102940

  • 12.

    Mosher, D. C., Erbacher, J. & Malone, M. J. (Eds.). Proc. ODP, Sci. Results, 207 (2007). College Station, TX, https://doi.org/10.2973/odp.proc.sr.207.2007.(Ocean Drilling Program).

  • 13.

    Gouyet, S., Unternehr, P. & Mascle, A. The French Guyana margin and the Demerara Plateau: geological history and petroleum plays, in Mascle, A., ed., Hydrocarbon and petroleum geology of France: Springer-Verlag, 411–422 (1994).

  • 14.

    Supko, P.R, & Perch-Nielsen, K. General synthesis of Central and South Atlantic drilling results, Leg 39. Deep Sea Drilling Project: Initial Reports of the Deep Sea Drilling Project: 39, 1099-1131 (1977). U.S. Govt. Printing Office, Washington D.C, https://doi.org/10.2973/dsdp.proc.39.146.1977.

  • 15.

    Jones, E. J. W., McMechan, G. A. & Zeng, X. Seismic evidence for crustal underplating beneath a large igneous province: The Sierra Leone Rise, equatorial Atlantic. Marine Geology 365, 52–60, https://doi.org/10.1016/j.margeo.2015.03.008 (2015).

  • 16.

    Skolotnev, S. G., Petrova, V. V. & Peyve, A. A. Origin of submarine volcanism at the Eastern margin of the Central Atlantic: investigation of the alkaline volcanic rocks of the Carter seamount (Grimaldi seamounts). Petrology 20, 59–85, https://doi.org/10.1134/S086959111106004X (2012).

  • 17.

    Jones, E. J. W., Goddard, D. A., Mitchell, J. G. & Banner, F. T. Lamprophyric volcanism of Cenozoic age on the Sierra Leone Rise: implications for regional tectonics and the stratigraphic time scale. Mar. Geol. 99, 19–28, https://doi.org/10.1016/0025-3227(91)90080-N (1991).

  • 18.

    Bertrand, H., Féraud, G. & Mascle, J. Alkaline volcano of Paleocene age on the Southern Guinean margin: mapping, petrology, 40Ar-39Ar laser probe dating, and implications for the evolution of the Eastern Equatorial Atlantic. Mar. Geol. 114, 251–262, https://doi.org/10.1016/0025-3227(93)90031-P (1993).

  • 19.

    Skolotnev, S. G., Peyve, A. A., Bylinskaya, M. E. & Golovina, L. A. New data on the composition and age of rocks from the Bathymetrists seamounts (eastern margin of the Equatorial Atlantic). Doklady Earth Sciences 472, 20–25, https://doi.org/10.1134/S1028334X17010160 (2017).

  • 20.

    Robinson, L.F. Reconstructing abrupt changes in chemistry and circulation of the Equatorial Atlantic Ocean: implications for global Climate and deep-water habitats. RRS James Cook Cruise JC094 report, bodc.ac.uk/resources/inventories/cruise_inventory/reports/jc094.pdf (2014).

  • 21.

    Maher, S. M., Wessel, P., Müller, R. D., Williams, S. E. & Harada, Y. Absolute plate motion of Africa around Hawaii-Emperor bend time. Geophysical Journal International 201, 1743–1764, https://doi.org/10.1093/gji/ggv104 (2015).

  • 22.

    Peters, B. J. & Day, J. M. D. Assessment of relative Ti, Ta, and Nb (TITAN) enrichments in ocean island basalts. Geochem. Geophys. Geosyst. 15, 4424–4444, https://doi.org/10.1002/2014GC005506 (2014).

  • 23.

    Paquette, J. L., Piro, J. L., Devidal, J. L., Bosse, V. & Didier, A. Sensitivity enhancement in LA-ICP-MS by N2 addition to carrier gas: application to radiometric dating of U-Th-bearing minerals. Agilent ICP-MS J. 58, 4–5 (2014).

    • Google Scholar
  • 24.

    Paquette, J. L., Ionov, D. A., Agashev, A. M., Gannoun, A. & Nikolenko, E. I. Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton. Precamb. Res. 301, 134–144, https://doi.org/10.1016/j.precamres.2017.09.008 (2017).

  • 25.

    Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth and Planetary Science Letters 166, 177–195, https://doi.org/10.1016/S0012-821X(98)00282-9 (1999).

  • 26.

    Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annual Review Earth Planetary Science 44, 107–138, https://doi.org/10.1146/annurev-earth-060115-012211 (2016).

  • 27.

    Torsvik, T. H. & Müller, D. T. Van der Voo, R., Steinberger, B. & Gaina, C. Global plate motion frames: toward a unified model. Reviews of Geophysics 46, RG3004, https://doi.org/10.1029/2007RG000227 (2008).

  • 28.

    Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623, https://doi.org/10.1038/nature06824 (2008).

  • 29.

    Rodger, M., Watts, A. B., Greenroyd, C. J., Peirce, C. & Hobbs, R. W. Evidence for unusually thin ocean crust and strong mantle beneath the Amazon Fan. Geology 34(12), 1081–1084, https://doi.org/10.1130/G22966A (2006).

  • 30.

    Deckart, K., Féraud, G. & Bertrand, H. Age of Jurassic continental tholeiites of French Guyana, Surinam and Guinea: implications for the initial opening of the Central Atlantic Ocean. Earth Planet. Sci. Lett. 150, 205–220, https://doi.org/10.1016/S0012-821X(97)00102-7 (1997).

  • 31.

    Marzoli, A. et al. Extensive 200-Million-Year-old continental flood basalts of the Central Atlantic Magmatic Province. Science 284, 616–618, https://doi.org/10.1126/science.284.5414.616 (1999).

  • 32.

    Walsh, J. N., Beckinsale, R. D., Skelhorn, R. R. & Thorpe, R. S. Geochemistry and petrogenesis of Tertiary granitic rocks from the Island of Mull, Northwest Scotland. Contributions to Mineralogy and Petrology 71, 99–116, https://doi.org/10.1007/BF00375426 (1979).

  • 33.

    Brooks, C. K. The East Greenland rifted volcanic margin. Geological Survey of Denmark and Greenland Bulletin 24, 96 pp. (2011).

  • 34.

    Peate, D.W. The Parana-Etendeka Province. In: Large Igneous Provinces: continental, oceanic and planetary flood volcanism. Mahoney, J. J. & Coffin, M. F. (eds). Geophysical monograph 100, 217–245 (1997).

  • 35.

    Menzies, M., Baker, J. & Chazot, G. Cenozoic plume evolution and flood basalts in Yemen: a key to understanding other examples. In: Mantle plumes: their identification through time. Ernst, R.E & Buchan, K.L. (eds.). Geological Society of America, Special Paper 352, 23-36 (2001).

  • 36.

    Deckart, K., Bertrand, H. & Liégeois, J. P. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos 82, 289–314, https://doi.org/10.1016/j.lithos.2004.09.023 (2005).

  • 37.

    Callegaro, S. et al. Geochemical constraints provided by the Freetown Layered Complex (Sierra Leone) on the origin of High-Ti Tholeiitic CAMP magmas. Journal of Petrology 58, 1811–1840, https://doi.org/10.1093/petrology/egx073 (2017).

  • 38.

    Marzoli, A. et al. The Central Atlantic Magmatic Province (CAMP): A review. In Tanner, L.H. (ed), The late Triassic world, topics in Geobiology 46, Springer, 91–125, https://doi.org/10.1007/978-3-319-68009-5_4 (2018).

  • 39.

    Loncke, L. et al. Structure of the Demerara passive-transform margin and associated sedimentary processes. Initial results from the IGUANES cruise. In Transform margins: development, controls and petroleum systems. Nemcok, M., Rybar, S., Sinha, S.T., Hermeston, S.A & Ledvenyiova, L. (eds). Geological Society, London, Special publications 431, 19 p. (2015). https://doi.org/10.1144/SP431.7

  • 40.

    Agranier, A. et al. Volcanic record of continental thinning in Baffin Bay margins: insights from Svartenhuk Halvo Peninsula basalts, West Greenland. Lithos 334-335, 117–140, https://doi.org/10.1016/j.lithos.2019.03.017 (2019).

  • 41.

    Maia, M. et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nature Geoscience 9, 619–623, https://doi.org/10.1038/NGEO2759 (2016).

  • 42.

    Le Voyer, M., Cottrell, E., Kelley, K. A., Brounce, M. & Hauri, E. H. The effect of primary versus secondary processes on the volatile content of MORB glasses: an example from the equatorial Mid-Atlantic Ridge (5°N-3°S). Journal of Geophysical Research: Solid Earth 120, 125–144, https://doi.org/10.1002/2014JB011160 (2015).

  • 43.

    Schilling, J.-G., Hanan, B. B., McCully, M. & Kingsley, R. H. Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: a Nd-Sr-Pb isotopic study. Journal of Geophysical Research 99(B6), 12005–12028, https://doi.org/10.1029/94JB00337 (1994).

  • 44.

    Duncan, R. A. & Richards, M. A. Hotspots, mantle plumes, flood basalts, and true polar wander. Reviews of Geophysics 29, 31–50, https://doi.org/10.1029/90RG02372 (1991).

  • 45.

    Cande, S., LaBrecque, J. L. & Haxby, W. B. Plate kinematics of the South Atlantic: Chron 34 to present. Journal of Geophysical Research 93, 13479–13492, https://doi.org/10.1029/JB093iB11p13479 (1988).

  • 46.

    O’Neill, C., Müller, D. & Steinberger, B. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosyst. 6, Q04003, https://doi.org/10.1029/2004GC000784 (2005).

  • 47.

    Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270, https://doi.org/10.1016/j.earscirev.2012.03.002 (2012).

  • 48.

    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–250, https://doi.org/10.1016/j.gloplacha.2016.10.002 (2016).

  • 49.

    Oh, J., Austin, J. A., Phillips, J. D., Coffin, M. F. & Stoffa, P. L. Seaward-dipping reflectors offshore the southeastern United States: Seismic evidence for extensive volcanism accompanying sequential formation of the Carolina trough and Blake Plateau basin. Geology 23, 9–12, https://doi.org/10.1130/0091-7613(1995)023 (1995).

  • 50.

    Austin, J. A. et al. Crustal structure of the Southeast Georgia embayment-Carolina trough: Preliminary results of a composite seismic image of a continental suture (?) and a volcanic passive margin. Geology 18, 1023–1027, https://doi.org/10.1130/0091-7613(1990)018 (1990).

  • 51.

    May, P. R. Pattern of Triassic-Jurassic diabase dikes around the North Atlantic in the context of predrift position of the continents. Geological Society of America Bulletin 82, 1285–1292, https://doi.org/10.1130/0016-7606(1971)82[1285:POTDDA]2.0.CO;2 (1971).

  • 52.

    Ernst, R. E., Head, J. X., Parfitt, E., Grosfils, E. & Wilson, L. Giant radiating dyke swarms on Earth and Venus. Earth-Sci. Rev. 39, 1–58, https://doi.org/10.1016/0012-8252(95)00017-5 (1995).

  • 53.

    Ruiz-Martinez, V. C., Torsvik, T. H., van Hinsbergen, D. J. J. & Gaina, C. Earth at 200 Ma: Global palaeogeography refined from CAMP palaeomagnetic data. Earth and Planetary Science Letters 331-332, 67–79, https://doi.org/10.1016/j.epsl.2012.03.008 (2012).

  • 54.

    Heffner, D. M., Knapp, J. H., Akintunde, O. M. & Knapp, C. C. Preserved extend of Jurassic flood basalt in the South Georgia Rift: A new interpretation of the J horizon. Geology 40, 167–190, https://doi.org/10.1130/G32638.1 (2012).

  • 55.

    Golonka, J. & Bocharova, N. Y. Hot spot activity and the break-up of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology 161, 49–69, https://doi.org/10.1016/S0031-0182(00)00117-6 (2000).

  • 56.

    Moreau, C., Ohnenstetter, D., Demaiffe, D. & Robineau, B. The Los archipelago nepheline syenite ring-structure: a magmatic marker of the evolution of the Central and Equatorial Atlantic. Can. Mineral. 34, 281–299 (1998).

    • Google Scholar
  • 57.

    Olyphant, J. R., Johnson, R. A. & Hughes, A. N. Evolution of the Southern Guinea Plateau: implications on Guinea-Demerara Plateau formation using insights from seismic, subsidence, and gravity data. Tectonophysics 717, 358–371, https://doi.org/10.1016/j.tecto.2017.08.036 (2017).

  • 58.

    Cotten, J. et al. Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts – evidence from French Polynesia. Chem. Geol. 119, 115–138, https://doi.org/10.1016/0009-2541(94)00102-E (1995).

  • 59.

    Mougel, B., Agranier, A., Hemond, C. & Gente, P. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise. Nature Comm. 5, 4474, https://doi.org/10.1038/ncomms5474 (2014).

  • 60.

    McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4 (1995).


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production