in

The relative contribution of individual quality and changing climate as drivers of lifetime reproductive success in a short-lived avian species

  • 1.

    White, T. C. R. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 83, 227–248. https://doi.org/10.1111/j.1469-185X.2008.00041.x (2008).

    CAS  Article  Google Scholar 

  • 2.

    Moreno, J. & Møller, A. P. Extreme climatic events in relation to global change and their impact on life histories. Curr. Zool. 57, 375–389. https://doi.org/10.1093/czoolo/57.3.375 (2011).

    Article  Google Scholar 

  • 3.

    Briedis, M., Hahn, S. & Adamík, P. Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecol. 17, 11. https://doi.org/10.1186/s12898-017-0121-4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B Biol. Sci. 275, 419–425. https://doi.org/10.1098/rspb.2007.1385 (2008).

    Article  Google Scholar 

  • 5.

    Griebel, I. & Dawson, R. D. Predictors of nestling survival during harsh weather events in an aerial insectivore, the tree swallow (Tachycineta bicolor). Can. J. Zool. 97, 81–90. https://doi.org/10.1139/cjz-2018-0070 (2019).

    Article  Google Scholar 

  • 6.

    Intergovernmental Pannel on Climate Change (IPCC). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. (eds. Masson-Delmotte, V. et al.) (World Meteorological Organization, 2018).

  • 7.

    Intergovernmental Pannel on Climate Change (IPCC). Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. (eds. Parry, M. L., O. F. Canziani, J. P. Palutikof, P. J. van der Linden and Hanson, C.E.) 976 (Cambridge University Press, Cambridge, 2007).

  • 8.

    Bailey, L. D. & van de Pol, M. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. J. Anim. Ecol. 85, 85–96. https://doi.org/10.1111/1365-2656.12451 (2016).

    Article  Google Scholar 

  • 9.

    Clutton-Brock, T. H. Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems (The University of Chicago Press, Chicago, 1988).

    Google Scholar 

  • 10.

    Newton, I. Lifetime Reproductive Success in Birds (Academic Press, Cambridge, 1989).

    Google Scholar 

  • 11.

    Weegman, M. D., Arnold, T. W., Dawson, R. D., Winkler, D. W. & Clark, R. G. Integrated population models reveal local weather conditions are the key drivers of population dynamics in an aerial insectivore. Oecologia 185, 119–130. https://doi.org/10.1007/s00442-017-3890-8 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Cam, E., Link, W. A., Cooch, E. G., Monnat, J.-Y. & Danchin, E. Individual covariation in life-history traits: seeing the trees despite the forest. Am. Nat. 159, 96–105. https://doi.org/10.1086/324126 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Chambert, T., Rotella, J. J., Higgs, M. D. & Garrott, R. A. Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate. Ecol. Evol. 3, 2047–2060. https://doi.org/10.1002/ece3.615 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Cam, E. et al. Looking for a needle in a haystack: inference about individual fitness components in a heterogeneous population. Oikos 122, 739–753. https://doi.org/10.1111/j.1600-0706.2012.20532.x (2013).

    Article  Google Scholar 

  • 15.

    Jenouvrier, S., Péron, C. & Weimerskirch, H. Extreme climate events and individual heterogeneity shape life-history traits and population dynamics. Ecol. Monogr. 85, 605–624 (2015).

    Article  Google Scholar 

  • 16.

    Jensen, H. et al. Lifetime reproductive success in relation to morphology in the house sparrow Passer domesticus. J. Anim. Ecol. 73, 599–611. https://doi.org/10.1111/j.0021-8790.2004.00837.x (2004).

    Article  Google Scholar 

  • 17.

    Saino, N. et al. Longevity and lifetime reproductive success of barn swallow offspring are predicted by their hatching date and phenotypic quality. J. Anim. Ecol. 81, 1004–1012. https://doi.org/10.1111/j.1365-2656.2012.01989.x (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Winkler, D. W. et al. Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows. Ecology 101, e03109. https://doi.org/10.1002/ecy.3109 (2020).

  • 19.

    Krüger, O. Age at first breeding and fitness in goshawk Accipiter gentilis. J. Anim. Ecol. 74, 266–273. https://doi.org/10.1111/j.1365-2656.2005.00920.x (2005).

    Article  Google Scholar 

  • 20.

    Blums, P. & Clark, R. G. Correlates of lifetime reproductive success in three species of European ducks. Oecologia 140, 61–67. https://doi.org/10.1007/s00442-004-1573-8 (2004).

    ADS  Article  PubMed  Google Scholar 

  • 21.

    Le Boeuf, B., Condit, R. & Reiter, J. Lifetime reproductive success of northern elephant seals (Mirounga angustirostris). Can. J. Zool. 97, 1203–1217. https://doi.org/10.1139/cjz-2019-0104 (2019).

    Article  Google Scholar 

  • 22.

    Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106. https://doi.org/10.1111/j.1461-0248.2008.01262.x (2009).

    Article  PubMed  Google Scholar 

  • 23.

    Snyder, R. E. & Ellner, S. P. Pluck or luck: does trait variation or chance drive variation in lifetime reproductive success?. Am. Nat. 191, E90–E107. https://doi.org/10.1086/696125 (2018).

    Article  PubMed  Google Scholar 

  • 24.

    Cam, E., Aubry, L. M. & Authier, M. The conundrum of heterogeneities in life history studies. Trends Ecol. Evol. 31, 872–886. https://doi.org/10.1016/j.tree.2016.08.002 (2016).

    Article  PubMed  Google Scholar 

  • 25.

    Jenouvrier, S. et al. When the going gets tough, the tough get going: effect of extreme climate on an Antarctic seabird’s life history. bioRxiv https://doi.org/10.1101/791855 (2019).

    Article  Google Scholar 

  • 26.

    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368. https://doi.org/10.1890/08-1034.1 (2009).

    Article  PubMed  Google Scholar 

  • 27.

    Grant, P. R. & Grant, B. R. Non-random fitness variation in two populations of Darwin’s finches. Proc. R. Soc. B. Biol. Sci. 267, 131–138. https://doi.org/10.1098/rspb.2000.0977 (2000).

    CAS  Article  Google Scholar 

  • 28.

    Johnson, W. C., Boettcher, S. E., Poiani, K. A. & Guntenspergen, G. Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands 24, 385–398. https://doi.org/10.1672/0277-5212(2004)024[0385:IOWEOT]2.0.CO;2 (2004).

    Article  Google Scholar 

  • 29.

    Dawson, R. D. Timing of breeding and environmental factors as determinants of reproductive performance of tree swallows. Can. J. Zool. 86, 843–850. https://doi.org/10.1139/Z08-065 (2008).

    Article  Google Scholar 

  • 30.

    Winkler, D. W. et al. Tree swallow (Tachycineta bicolor). In The Birds of North America Online (ed. Poole, A.) (Cornell Lab of Ornithology, Cornell, 2011).

    Google Scholar 

  • 31.

    Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Fast, M. Climate Variability, Timing of Nesting and Breeding Success of Tree Swallows (Tachycineta bicolor) (University of Saskatchewan, Saskatchewan, 2007).

    Google Scholar 

  • 33.

    Harriman, V. B. Seasonal Variation in Quality and Survival of Nestlings Tree Swallows (Tachycineta bicolor): Tests of Alternative Hypotheses (University of Saskatchewan, Saskatchewan, 2014).

    Google Scholar 

  • 34.

    Martínez-Padilla, J., Vergara, P. & Fargallo, J. A. Increased lifetime reproductive success of first-hatched siblings in common kestrels Falco tinnunculus. Ibis 159, 803–811. https://doi.org/10.1111/ibi.12494 (2017).

    Article  Google Scholar 

  • 35.

    Weatherhead, P. J. & Dufour, K. W. Fledging success as an index of recruitment in red-winged blackbirds. Auk 117, 627–633. https://doi.org/10.1093/auk/117.3.627 (2000).

    Article  Google Scholar 

  • 36.

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).

    Article  Google Scholar 

  • 37.

    Murphy, M. T. Lifetime reproductive success of female eastern kingbirds (Tyrannus tyrannus): influence of lifespan, nest predation, and body size. Auk 124, 1010–1022. https://doi.org/10.1093/auk/124.3.1010 (2007).

    Article  Google Scholar 

  • 38.

    Tarwater, C. E. & Arcese, P. Young females pay higher costs of reproduction in a short-lived bird. Behav. Ecol. Sociobiol. 71, 84. https://doi.org/10.1007/s00265-017-2309-1 (2017).

    Article  Google Scholar 

  • 39.

    Vedder, O. & Bouwhuis, S. Heterogeneity in individual quality in birds: overall patterns and insights from a study on common terns. Oikos 127, 719–727. https://doi.org/10.1111/oik.04273 (2018).

    Article  Google Scholar 

  • 40.

    Murphy, M. T., Armbrecth, B., Vlamis, E. & Pierce, A. Is reproduction by tree swallows cost free?. Auk 117, 902–912. https://doi.org/10.1093/auk/117.4.902 (2000).

    Article  Google Scholar 

  • 41.

    Wheelwright, N. T., Leary, J. & Fitzgerald, C. The costs of reproduction in tree swallows (Tachycineta bicolor). Can. J. Zool. 69, 2540–2547. https://doi.org/10.1139/z91-358 (1991).

    Article  Google Scholar 

  • 42.

    Shutler, D., Clark, R. G., Fehr, C. & Diamond, A. W. Time and recruitment costs as currencies in manipulation studies on the costs of reproduction. Ecology 87, 2938–2946. https://doi.org/10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2 (2006).

    Article  Google Scholar 

  • 43.

    Verhulst, S. & Nilsson, J. Å. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B. 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).

    Article  Google Scholar 

  • 44.

    Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).

    Article  Google Scholar 

  • 45.

    Plard, F. et al. The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology 96, 1516–1528. https://doi.org/10.1890/14-0106.1 (2015).

    Article  Google Scholar 

  • 46.

    Raja-aho, S., Eeva, T., Suorsa, P., Valkama, J. & Lehikoinen, E. Juvenile barn swallows Hirundo rustica L. from late broods start autumn migration younger, fuel less effectively and show lower return rates than juveniles from early broods. Ibis 159, 892–901. https://doi.org/10.1111/ibi.12492 (2018).

    Article  Google Scholar 

  • 47.

    Svensson, E. Natural selection on avian breeding time: causality, fecundity-dependent, and fecundity-independent selection. Evolution 51, 1276–1283. https://doi.org/10.1111/j.1558-5646.1997.tb03974.x (1997).

    Article  Google Scholar 

  • 48.

    Rioux Paquette, S., Pelletier, F., Garant, D. & Bélisle, M. Severe recent decrease of adult body mass in a declining insectivorous bird population. Proc. R. Soc. B. Biol. Sci. 281, 20140649. https://doi.org/10.1098/rspb.2014.0649 (2014).

    Article  Google Scholar 

  • 49.

    Winkler, D. W. & Allen, P. E. The seasonal decline in tree swallow clutch size: physiological constraint or strategic adjustment?. Ecology 77, 922–932 (1996).

    Article  Google Scholar 

  • 50.

    Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Verhulst, S., van Balen, J. H. & Tinbergen, J. M. Seasonal decline in reproductive success of the great tit: variation in time or quality?. Ecology 76, 2392–2403 (1995).

    Article  Google Scholar 

  • 52.

    Blums, P., Clark, R. G. & Mednis, A. Patterns of reproductive effort and success in birds: path analyses of long-term data from European ducks. J. Anim. Ecol. 71, 280–295. https://doi.org/10.1046/j.1365-2656.2002.00598.x (2002).

    Article  Google Scholar 

  • 53.

    Pärt, T., Knape, J., Low, M., Öberg, M. & Arlt, D. Disentangling the effects of date, individual, and territory quality on the seasonal decline in fitness. Ecology 98, 2102–2110. https://doi.org/10.1002/ecy.1891 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Brinkhof, M. W. G. & Cavé, A. J. Food supply and seasonal variation in breeding success: an experiment in the European coot. Proc. R. Soc. B Biol. Sci. 264, 291–296. https://doi.org/10.1098/rspb.1997.0041 (1997).

    ADS  Article  Google Scholar 

  • 55.

    Rossmanith, E., Höntsch, K., Blaum, N. & Jeltsch, F. Reproductive success and nestling diet in the lesser spotted woodpecker (Picoides minor): the early bird gets the caterpillar. J. Ornithol. 148, 323–332. https://doi.org/10.1007/s10336-007-0134-4 (2007).

    Article  Google Scholar 

  • 56.

    Kim, S. Y., Velando, A., Torres, R. & Drummond, H. Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia 166, 615–626. https://doi.org/10.1007/s00442-011-1914-3 (2011).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Mourocq, E. et al. Life span and reproductive cost explain interspecific variation in the optimal onset of reproduction. Evolution 70, 296–313. https://doi.org/10.1111/evo.12853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Hoset, K. S., Villers, A., Wistbacka, R. & Selonen, V. Pulsed food resources, but not forest cover, determine lifetime reproductive success in a forest-dwelling rodent. J. Anim. Ecol. 86, 1235–1245. https://doi.org/10.1111/1365-2656.12715 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Teplitsky, C., Mills, J. A., Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–726. https://doi.org/10.1111/j.1558-5646.2008.00581.x (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    McCleery, R. H. et al. Components of variance underlying fitness in a natural population of the great tit Parus major. Am. Nat. 164, E62–E72. https://doi.org/10.1086/422660 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    Salles, O. C. et al. Strong habitat and weak genetic effects shape the lifetime reproductive success in a wild clownfish population. Ecol. Lett. 23, 265–273. https://doi.org/10.1111/ele.13428 (2020).

    Article  PubMed  Google Scholar 

  • 62.

    McCleery, R. H. & Perrins, C. M. Lifetime reproductive success of the great tit, Parus major in Reproductive success 136–153 (The University of Chicago Press, Chicago, 1988).

  • 63.

    Twining, C. W., Shipley, J. R. & Winkler, D. W. Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21, 1812–1820. https://doi.org/10.1111/ele.13156 (2018).

    Article  PubMed  Google Scholar 

  • 64.

    Clark, R. G. et al. Geographic variation and environmental correlates of apparent survival rates in adult tree swallows Tachycineta bicolor. J. Avian Biol. 49, 012514. https://doi.org/10.1111/jav.01659 (2018).

    Article  Google Scholar 

  • 65.

    Cox, A. R., Robertson, R. J., Rendell, W. B. & Bonier, F. Population decline in tree swallows (Tachycineta bicolor) linked to climate change and inclement weather on the breeding ground. Oecologia 192, 713–722. https://doi.org/10.1007/s00442-020-04618-8 (2020).

    ADS  Article  PubMed  Google Scholar 

  • 66.

    Cox, A. R., Robertson, R. J., Fedy, B. C., Rendell, W. B. & Bonier, F. Demographic drivers of local population decline in tree swallows (Tachycineta bicolor) in Ontario, Canada. Condor 120, 842–851. https://doi.org/10.1650/CONDOR-18-42.1 (2018).

    Article  Google Scholar 

  • 67.

    Shutler, D. et al. Spatiotemporal patterns in nest box occupancy by tree swallows across North America. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00517-070103 (2012).

    Article  Google Scholar 

  • 68.

    Winkler, D. W. et al. Breeding dispersal and philopatry in the tree swallow. Condor 106, 768–776. https://doi.org/10.1093/condor/106.4.768 (2004).

    Article  Google Scholar 

  • 69.

    Lambrechts, M. M. et al. Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation?. Oikos 86, 147–151. https://doi.org/10.2307/3546579 (1999).

    Article  Google Scholar 

  • 70.

    Mantyka-Pringle, C. et al. Antagonistic, synergistic and direct effects of land use and climate on Prairie wetland ecosystems: ghosts of the past or present?. Divers. Distrib. 25, 1924–1940. https://doi.org/10.1111/ddi.12990 (2019).

    Article  Google Scholar 

  • 71.

    Johnson, W. C. et al. Prairie wetland complexes as landscape functional units in a changing climate. Bioscience 60, 128–140. https://doi.org/10.1525/bio.2010.60.2.7 (2010).

    Article  Google Scholar 

  • 72.

    Zhao, Q., Silverman, E., Fleming, K. & Boomer, G. S. Forecasting waterfowl population dynamics under climate change—does the spatial variation of density dependence and environmental effects matter?. Biol. Conserv. 194, 80–88. https://doi.org/10.1016/j.biocon.2015.12.006 (2016).

    Article  Google Scholar 

  • 73.

    British Columbia Ministry of Environment. Indicators of climate change for British Columbia update. (Province of British Columbia, 2016).

  • 74.

    Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B Biol. Sci. 286, 20190018. https://doi.org/10.1098/rspb.2019.0018 (2019).

    Article  Google Scholar 

  • 75.

    O’Brien, E. L. & Dawson, R. D. Context-dependent genetic benefits of extra-pair mate choice in a socially monogamous passerine. Behav. Ecol. Sociobiol. 61, 775–782. https://doi.org/10.1007/s00265-006-0308-8 (2007).

    Article  Google Scholar 

  • 76.

    Whittingham, L. A. & Dunn, P. O. Female responses to intraspecific brood parasitism in the tree swallow. Condor 103, 166–170. https://doi.org/10.1093/condor/103.1.166 (2001).

    Article  Google Scholar 

  • 77.

    Shutler, D. & Clark, R. G. Causes and consequences of tree swallow (Tachycineta bicolor) dispersal in Saskatchewan. Auk 120, 619–631. https://doi.org/10.1093/auk/120.3.619 (2003).

    Article  Google Scholar 

  • 78.

    Leffelaar, D. & Robertson, R. J. Nest usurpation and female competition for breeding opportunities by tree swallows. Wilson Bull. 97, 221–224 (1985).

    Google Scholar 

  • 79.

    Stutchbury, B. J. & Robertson, R. J. Floating populations of female tree swallows. Auk 102, 651–654 (1985).

    Article  Google Scholar 

  • 80.

    Clark, R. G. & Shutler, D. Avian habitat selection: pattern from process in nest-site use by ducks?. Ecology 80, 272–287. https://doi.org/10.1890/0012-9658(1999)080[0272:AHSPFP]2.0.CO;2 (1999).

    Article  Google Scholar 

  • 81.

    O’Brien, E. L. & Dawson, R. D. Perceived risk of ectoparasitism reduces primary reproductive investment in tree swallows Tachycineta bicolor. J. Avian Biol. 36, 269–275. https://doi.org/10.1111/j.0908-8857.2005.03562.x (2005).

    Article  Google Scholar 

  • 82.

    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507. https://doi.org/10.1007/s00442-005-0075-7 (2005).

    ADS  Article  Google Scholar 

  • 83.

    Bitton, P.-P. & Dawson, R. D. Age-related differences in plumage characteristics of male tree swallows Tachycineta bicolor: hue and brightness signal different aspects of individual quality. J. Avian Biol. 39, 446–452. https://doi.org/10.1111/j.0908-8857.2008.04283.x (2008).

    Article  Google Scholar 

  • 84.

    Hussell, D. J. T. Age and plumage color in female tree swallows. J. F. Ornithol. 54, 312–318 (1983).

    Google Scholar 

  • 85.

    Gómez, J. et al. Effects of geolocators on reproductive performance and annual return rates of a migratory songbird. J. Ornithol. 155, 37–44. https://doi.org/10.1007/s10336-013-0984-x (2014).

    Article  Google Scholar 

  • 86.

    Gustafsson, L. & Pärt, T. Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs. Nature 347, 279–281. https://doi.org/10.1038/347279a0 (1990).

    ADS  Article  Google Scholar 

  • 87.

    Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1093/auk/122.4.1225 (2005).

    Article  Google Scholar 

  • 88.

    Ardia, D. R., Wasson, M. F. & Winkler, D. W. Individual quality and food availability determine yolk and egg mass and egg composition in tree swallows Tachycineta bicolor. J. Avian Biol. 37, 252–259. https://doi.org/10.1111/l.2006.0908.8857.03624.x (2006).

    Article  Google Scholar 

  • 89.

    Clark, R. G., Pöysä, H., Runko, P. & Paasivaara, A. Spring phenology and timing of breeding in short-distance migrant birds: phenotypic responses and offspring recruitment patterns in common goldeneyes. J. Avian Biol. 45, 457–465. https://doi.org/10.1111/jav.00290 (2014).

    Article  Google Scholar 

  • 90.

    Robertson, R. J. & Rendell, W. B. A long-term study of reproductive performance in tree swallows: the influence of age and senescence on output. J. Anim. Ecol. 70, 1014–1031. https://doi.org/10.1046/j.0021-8790.2001.00555.x (2001).

    Article  Google Scholar 

  • 91.

    Ardia, D. R. Individual quality mediates trade-offs between reproductive effort and immune function in tree swallows. J. Anim. Ecol. 74, 517–524. https://doi.org/10.1111/j.1365-2656.2005.00950.c (2005).

    Article  Google Scholar 

  • 92.

    Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J. & Robertson, R. J. A test of the mismatch hypothesis: how is timing of reproduction related to food abundance in an aerial insectivore?. Ecology 92, 450–461. https://doi.org/10.1890/10-0478.1 (2011).

    Article  PubMed  Google Scholar 

  • 93.

    Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).

    Article  Google Scholar 

  • 94.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).

  • 95.

    SAS Institute Incorporated. SAS (Data Analysis Software System), Version 9.4 (SAS Institute Incorporated, 2016).


  • Source: Ecology - nature.com

    Researchers using environmental DNA must engage ethically with Indigenous communities

    Commercializing next-generation nuclear energy technology