in

The third dimension in river restoration: how anthropogenic disturbance changes boundary conditions for ecological mitigation

  • 1.

    Giller, P. S. River restoration: seeking ecological standards. Editor’s introduction. J. Appl. Ecol. 42, 201–207 (2005).

    Google Scholar 

  • 2.

    Walsh, C. J. et al. The urban stream syndrome: current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 24, 706–723 (2005).

    Google Scholar 

  • 3.

    Rosgen, D. L. in Proceedings of the Conference on Management of Landscapes Disturbed by Channel incision. (ISBN 0-937099-05-8).

  • 4.

    Perşoiu, I. & Rădoane, M. Spatial and temporal controls on historical channel responses–study of an atypical case: Someşu Mic River, Romania. Earth Surf. Process. Landf. 36, 1391–1409 (2011).

    ADS  Google Scholar 

  • 5.

    Rohde, S., Hostmann, M., Peter, A. & Ewald, K. Room for rivers: an integrative search strategy for floodplain restoration. Landsc. Urban Plan. 78, 50–70 (2006).

    Google Scholar 

  • 6.

    Buijse, A. D. et al. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshw. Biol. 47, 889–907. https://doi.org/10.1046/j.1365-2427.2002.00915.x (2002).

    Article  Google Scholar 

  • 7.

    Fournier, M. et al. Flood risk mitigation in Europe: how far away are we from the aspired forms of adaptive governance?. Ecol. Soc. https://doi.org/10.5751/es-08991-210449 (2016).

    Article  Google Scholar 

  • 8.

    Jähnig, S., Hering, D. & Sommerhäuser, M. Fließgewässer-Renaturierung heute und morgen – EG-Wasserrahmenrichtlinie, Maßnahmen und Effizienzkontrolle. Limnologie Aktuell, Band 13 (2011). ISBN 978-3-510-53011-3.

  • 9.

    Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    PubMed  Google Scholar 

  • 10.

    Feld, C. K. et al. From natural to degraded rivers and back again: a test of restoration ecology theory and practice. Adv. Ecol. Res. 44, 119–209 (2011).

    Google Scholar 

  • 11.

    Schottler, S. P. et al. Twentieth century agricultural drainage creates more erosive rivers. Hydrol. Process. 28, 1951–1961 (2014).

    ADS  Google Scholar 

  • 12.

    Nienhuis, P. & Leuven, R. River restoration and flood protection: controversy or synergism?. Hydrobiologia 444, 85–99 (2001).

    Google Scholar 

  • 13.

    Asakawa, S., Yoshida, K. & Yabe, K. Perceptions of urban stream corridors within the greenway system of Sapporo, Japan. Landsc. Urban Plan. 68, 167–182 (2004).

    Google Scholar 

  • 14.

    Löfgren, S., Kahlert, M., Johansson, M. & Bergengren, J. Classification of two swedish forest streams in accordance with the European union water framework directive. Ambio 38, 394–400. https://doi.org/10.2307/40390257 (2009).

    Article  PubMed  Google Scholar 

  • 15.

    Ellwanger, G., Finck, P., Riecken, U. & Schröder, E. Gefährdungssituation von Lebensräumen und Arten der Gewässer und Auen in Deutschland. Nat. Landsc. 4, 150–155 (2012).

    Google Scholar 

  • 16.

    Moss, T. The governance of land use in river basins: prospects for overcoming problems of institutional interplay with the EU Water Framework Directive. Land Use Policy 21, 85–94. https://doi.org/10.1016/j.landusepol.2003.10.001 (2004).

    Article  Google Scholar 

  • 17.

    Griffiths, M. The European Water Framework Directive: an approach to integrated river basin management. Eur. Water Manag. Online 5, 1–14 (2002).

    Google Scholar 

  • 18.

    Zingraff-Hamed, A., Greulich, S., Wantzen, K. M. & Pauleit, S. Societal drivers of European water governance: a comparison of urban river restoration practices in France and Germany. Water 9(3), 206. https://doi.org/10.3390/w9030206 (2017).

    Article  Google Scholar 

  • 19.

    Roni, P., Hanson, K. & Beechie, T. Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. North Am. J. Fish. Manag. 28, 856–890 (2008).

    Google Scholar 

  • 20.

    Poff, N. L. & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: an ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. Bioscience 52, 659–668. https://doi.org/10.1641/0006-3568(2002)052[0659:hdvawi]2.0.co;2 (2002).

    Article  Google Scholar 

  • 21.

    Pulg, U., Barlaup, B. T., Sternecker, K., Trepl, L. & Unfer, G. Restoration of spawning habitats of Brown Trout (salmo trutta) in a regualted chalk stream. River Res. Appl. 29, 172–182. https://doi.org/10.1002/rra.1594 (2013).

    Article  Google Scholar 

  • 22.

    Pedersen, M. L., Andersen, J. M., Nielsen, K. & Linnemann, M. Restoration of Skjern River and its valley: project description and general ecological changes in the project area. Ecol. Eng. 30, 131–144 (2007).

    Google Scholar 

  • 23.

    Opperman, J. J. & Merenlender, A. M. The effectiveness of riparian restoration for improving instream fish habitat in four hardwood-dominated California streams. North Am. J. Fish. Manag. 24, 822–834 (2004).

    Google Scholar 

  • 24.

    Pretty, J. et al. River rehabilitation and fish populations: assessing the benefit of instream structures. J. Appl. Ecol. 40, 251–265 (2003).

    Google Scholar 

  • 25.

    Pander, J. & Geist, J. The contribution of different restored habitats to fish diversity and population development in a highly modified river: a case study from the river Günz. Water 10, 1202 (2018).

    Google Scholar 

  • 26.

    Shields, F. D. Jr., Copeland, R. R., Klingeman, P. C., Doyle, M. W. & Simon, A. Design for stream restoration. J. Hydraul. Eng. 129, 575–584 (2003).

    Google Scholar 

  • 27.

    Roni, P. et al. A review of stream restoration techniques and a hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. North Am. J. Fish. Manag. 22, 1–20 (2002).

    Google Scholar 

  • 28.

    Hering, D. et al. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J. Appl. Ecol. 52, 1518–1527. https://doi.org/10.1111/1365-2664.12531 (2015).

    Article  Google Scholar 

  • 29.

    Olesen, J. M. et al. From Broadstone to Zackenberg: space, time and hierarchies in ecological networks. Adv. Ecol. Res. 42, 1 (2010).

    ADS  Google Scholar 

  • 30.

    Wohl, E. et al. River restoration. Water Resour. Res. 41, W10301. https://doi.org/10.1029/2005WR003985 (2005).

    ADS  Article  Google Scholar 

  • 31.

    Formann, E., Egger, G., Hauer, C. & Habersack, H. Dynamic disturbance regime approach in river restoration: concept development and application. Landsc. Ecol. Eng. 10, 323–337 (2014).

    Google Scholar 

  • 32.

    Bazin, P. & Gautier, E. Un espace de liberté pour la Loire et l’Allier: de la détermination géomorphologique à la gestion/Optimum streamways for the Loire and Allier. Revue de géographie de Lyon 71, 377–386 (1996).

    Google Scholar 

  • 33.

    Dister, E. Die Bedeutung natürlicher Flußdynamik am Beispiel von Loire und Allier. Schriftenreihe für Landschaftspflege und Naturschutz 56, 67–78 (1998).

    Google Scholar 

  • 34.

    Malavoi, J., Bravard, J., Piégay, H., Héroin, E. & Ramez, P. Détermination de l’espace de liberté des cours d’eau. Guide Tech. 2, 39 (1998).

    Google Scholar 

  • 35.

    Piégay, H., Darby, S., Mosselman, E. & Surian, N. A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Res. Appl. 21, 773–789 (2005).

    Google Scholar 

  • 36.

    Spring, F. J. The Training of Certain Great Rivers in Northern India, So That They May Not Outflank the Works Which Span Them. Technical paper (1903).

  • 37.

    Darby, S. E. & Thorne, C. R. A river runs through it: morphological and landowner sensitivities along the Upper Missouri River, Montana, USA. Trans. Inst. Br. Geogr. 25, 91–107 (2000).

    Google Scholar 

  • 38.

    Surian, N. Effects of human impact on braided river morphology: examples from Northern Italy. In Braided Rivers: Process, Deposits, Ecology and Management, Vol. 36 (eds Sambrook Smith, G. H., et al.) 327–338 (International Association of Sedimentologists Special Publication, 2006).

  • 39.

    Rosgen, D. L. A classification of natural rivers. CATENA 22, 169–199 (1994).

    Google Scholar 

  • 40.

    Zingraff-Hamed, A., Greulich, S., Pauleit, S. & Wantzen, K. M. Urban and rural river restoration in France: a typology. Restor. Ecol. 25, 994–1004. https://doi.org/10.1111/rec.12526 (2017).

    Article  Google Scholar 

  • 41.

    De Jalón, D. G. & Gortazar, J. Evaluation of instream habitat enhancement options using fish habitat simulations: case-studies in the river Pas (Spain). Aquat. Ecol. 41, 461–474 (2007).

    Google Scholar 

  • 42.

    Kleinhans, M. G. & van den Berg, J. H. River channel and bar patterns explained and predicted by an empirical and a physics-based method. Earth Surf. Proc. Land. 36, 721–738 (2011).

    ADS  Google Scholar 

  • 43.

    Schmidt, J. C., Webb, R. H., Valdez, R. A., Marzolf, G. R. & Stevens, L. E. Science and values in river restoration in the Grand Canyon. Bioscience 48, 735–747 (1998).

    Google Scholar 

  • 44.

    Kondolf, G. M. Lessons learned from river restoration projects in California. Aquatic Conserv. Mar. Freshw. Ecosyst. 8, 39–52 (1998).

    Google Scholar 

  • 45.

    Palmer, M. A., Menninger, H. L. & Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?. Freshw. Biol. 55, 205–222. https://doi.org/10.1111/j.1365-2427.2009.02372.x (2010).

    Article  Google Scholar 

  • 46.

    Dahm, V. et al. (eds) Naturschutz und Reaktorsicherheit Bundesministerium für Umwelt) (Umweltbundesamt, Dessau-Roßlau, 2014).

    Google Scholar 

  • 47.

    Jäggi, M. Alternierende Kiesbänke 286 (Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH-Zürich, Zürich, 1983).

  • 48.

    A.M.A.F., D. S. Alternate Bars and Related Alluvial Processes MSc thesis thesis, Queen’s University, (1991).

  • 49.

    49Weilheim, W. (ed Wasserwirtschaftsamt Weilheim) (Weilheim, 2003).

  • 50.

    Cacace, M. et al. Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environ. Earth Sci. 70, 3585–3602 (2013).

    CAS  Google Scholar 

  • 51.

    Alefs, J. & Müller, J. Differences in the eutrophication dynamics of Ammersee and Starnberger See (Southern Germany), reflected by the diatom succession in varve-dated sediments. J. Paleolimnol. 21, 395–407 (1999).

    ADS  Google Scholar 

  • 52.

    Czymzik, M. et al. A 450 year record of spring‐summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Resour. Res. https://doi.org/10.1029/2009WR008360 (2010).

    Article  Google Scholar 

  • 53.

    Pottgieser, T. & Sommerhäuser, M. Aktualisierung der Steckbriefe der Bundesdeutschen Fließgewässertypen (2008).

  • 54.

    Bueche, T. & Vetter, M. Influence of groundwater inflow on water temperature simulations of Lake Ammersee using a one-dimensional hydrodynamic lake model. Erdkunde 68, 19–31 (2014).

    Google Scholar 

  • 55.

    Bogner, F. X. Ammer und Amper aus der Luft: Porträt einer Flusslandschaft (Bayerland, 2009).

  • 56.

    Landwirtschaft, B. L. f. Böden und ihre Nutzung. https://www.lfl.bayern.de/iab/boden/nutzung/034121/index.php?auswahl= (2004).

  • 57.

    Bayrisches Landesamt für Digitalisierung, B. u. V. & Umwelt, B. L. f. Bayernatlas. https://geoportal.bayern.de/bayernatlas/index.html?X=5309095.80&Y=4435954.86&zoom=9&lang=de&topic=umwe&bgLayer=atkis&layers=relief_t,40986241-934a-46e8-a24a-2c0383c5963e,4089c1ee-c6a4-40fd-8302-692d81207d9b,bb0343f9-43b6-450e-a1b5-019600eeb565&layers_visibility=true,false,false,true&catalogNodes=110310,110,11031 (2017).

  • 58.

    Guzelj, M. https://www.esri.de/landingpages/arcgis-10-4 (2020).

  • 59.

    Umwelt, B. L. f. Stammdaten Weilheim/Ammer. https://www.hnd.bayern.de/pegel/isar/weilheim-16613004/stammdaten? (2020).

  • 60.

    Umwelt, B. L. F. https://www.hnd.bayern.de/pegel/isar/weilheim-16613004/statistik?. https://www.hnd.bayern.de/pegel/isar/weilheim-16613004/abfluss? (2017).

  • 61.

    Online, B. L. www.bayerische-landesbibliothek-online.de/histkarten/ (2017).

  • 62.

    Bayrisches Landesamt für Digitalisierung, B. u. V. & Umwelt, B. L. f. Bayernatlas Zeitreise 1930. https://geoportal.bayern.de/bayernatlas/index.html?zoom=7&lang=de&topic=zeitr&bgLayer=luftbild_labels&layers=relief_t,40986241-934a-46e8-a24a-2c0383c5963e,4089c1ee-c6a4-40fd-8302-692d81207d9b,bb0343f9-43b6-450e-a1b5-019600eeb565,zeitreihe_tk&layers_visibility=true,false,false,false,true&E=656786.72&N=5302906.13&layers_timestamp=,,,,19301231&time=1930 (2017).

  • 63.

    Bayrisches Landesamt für Digitalisierung, B. u. V. & Umwelt, B. L. f. Bayernatlas Zeitreise 1941. https://geoportal.bayern.de/bayernatlas/index.html?zoom=7&lang=de&topic=zeitr&bgLayer=atkis&layers=relief_t,40986241-934a-46e8-a24a-2c0383c5963e,4089c1ee-c6a4-40fd-8302-692d81207d9b,bb0343f9-43b6-450e-a1b5-019600eeb565,zeitreihe_tk&layers_visibility=true,false,false,false,true&E=662078.05&N=5303953.64&time=1941&layers_timestamp=,,,,19411231 (2017).

  • 64.

    Charrier, P. Flusskorridore in Frankreich—Konzept, Umsetzung, Erfahrungen. Auenmagazin – Magazin des Auenzentrums Neuburg a.d. Donau 03/2012 (2012).

  • 65.

    Yalin, M. River Mechanics 219 (Elsevier, New York, 1992).

    Google Scholar 

  • 66.

    Ackers, P. & Charlton, F. Summar. The geometry of small meandering streams. Proc. Inst. Civ. Eng. 47, 80 (1970).

    Google Scholar 

  • 67.

    Ashmore, P. Braiding phenomena: statics and kinetics. Gravel Bed Rivers V, 95–121 (2001).

    Google Scholar 

  • 68.

    Van den Berg, J. H. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12, 259–279 (1995).

    ADS  Google Scholar 

  • 69.

    Millar, R. G. Theoretical regime equations for mobile gravel-bed rivers with stable banks. Geomorphology 64, 207–220 (2005).

    ADS  Google Scholar 

  • 70.

    Griffiths, G. A. Stable-channel design in gravel-bed rivers. J. Hydrol. 52, 291–305 (1981).

    ADS  Google Scholar 

  • 71.

    Mosley, M. Response of braided rivers to changing discharge. J. Hydrol. (N. Z.) 22, 18–67 (1983).

    Google Scholar 

  • 72.

    Julien, P. Y., Shah-Fairbank, S. C. & Kim, J. Restoration of Abandoned Channels. Report, Colorado State University (2008).

  • 73.

    Simpson, N. T., Pierce, C. L., Roe, K. J. & Weber, M. J. Boone River Watershed Stream Fish and Habitat Monitoring, IA. (2016).

  • 74.

    74Lóczy, D. et al. in Water Resources and Wetlands. Conference Proceedings. Tulcea, Romania. 11–13.

  • 75.

    Marti, C. Morphologie von verzweigten Gerinnen: Ansätze zur Abfluss-, Geschiebetransport-und Kolktiefenberechnung, ETH Zurich, (2006).

  • 76.

    Bockelmann, B., Fenrich, E., Lin, B. & Falconer, R. Development of an ecohydraulics model for stream and river restoration. Ecol. Eng. 22, 227–235 (2004).

    Google Scholar 

  • 77.

    Shafroth, P. B. et al. Ecosystem effects of environmental flows: modelling and experimental floods in a dryland river. Freshw. Biol. 55, 68–85 (2010).

    Google Scholar 

  • 78.

    Finaud-Guyot, P., Delenne, C., Guinot, V. & Llovel, C. 1D–2D coupling for river flow modeling. C. R. Méc. 339, 226–234 (2011).

    ADS  MATH  Google Scholar 

  • 79.

    Coulthard, T. & Van De Wiel, M. Modelling river history and evolution. Phil. Trans. R. Soc. A 370, 2123–2142 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 80.

    Brunner, G. W. (ed US Army Corps of Engineering Hydrologic Engineering Center (HEC)) 2-13 (US Army Corps of Engineering, Davis, California, 2010).

  • 81.

    Dietrich, W. E., Kirchner, J. W., Ikeda, H. & Iseya, F. Sediment supply and the development of the coarse surface layer in gravel-bedded rivers. Nature 340, 215–217 (1989).

    ADS  Google Scholar 

  • 82.

    Jessop, B. & Harvie, C. A CUSfRd Analysis of Discharge Patterns by a Hydroelectric Dam and Discussion of Potential Effects on the Upstream Migration of American Eel Elvers. (2003).

  • 83.

    Lehmann, B., Bernhart, H.-H. & Nestmann, F. Hydraulik naturnaher Fließgewässer (Universität Karlsruhe (TH) Institut für Wasser und Gewässerentwicklung, Karlsruhe, 2005).

    Google Scholar 

  • 84.

    Nakamura, K., Tockner, K. & Amano, K. River and wetland restoration: lessons from Japan. BioScience 56, 419–429 (2006).

    Google Scholar 

  • 85.

    Nanson, G. C. & Knighton, A. D. Anabranching rivers: their cause, character and classification. Earth Surf. Proc. Landf. 21, 217–239 (1996).

    ADS  Google Scholar 

  • 86.

    Collins, B. D. & Montgomery, D. R. Forest development, wood jams, and restoration of floodplain rivers in the Puget Lowland, Washington. Restor. Ecol. 10, 237–247 (2002).

    Google Scholar 

  • 87.

    Eaton, B. C. & Millar, R. G. Optimal alluvial channel width under a bank stability constraint. Geomorphology 62, 35–45 (2004).

    ADS  Google Scholar 

  • 88.

    Eaton, B. & Millar, R. Predicting gravel bed river response to environmental change: the strengths and limitations of a regime-based approach. Earth Surf. Proc. Landf. 42, 994–1008 (2017).

    ADS  Google Scholar 

  • 89.

    Lobanova, A. et al. Hydrological impacts of moderate and high-end climate change across European river basins. J. Hydrol. Reg. Stud. 18, 15–30. https://doi.org/10.1016/j.ejrh.2018.05.003 (2018).

    Article  Google Scholar 

  • 90.

    Rice, J. S., Emanuel, R. E. & Vose, J. M. The influence of watershed characteristics on spatial patterns of trends in annual scale streamflow variability in the continental US. J. Hydrol. 540, 850–860 (2016).

    ADS  Google Scholar 

  • 91.

    Xu, J. Comparison of hydraulic geometry between sand-and gravel-bed rivers in relation to channel pattern discrimination. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 29, 645–657 (2004).

    ADS  Google Scholar 

  • 92.

    Bristow, C. & Best, J. L. Braided rivers: perspectives and problems. Geol. Soc. Lond. Spec. Publ. 75, 1–11 (1993).

    ADS  Google Scholar 

  • 93.

    Alabyan, A. M. & Chalov, R. S. Types of river channel patterns and their natural controls. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 23, 467–474 (1998).

    ADS  Google Scholar 

  • 94.

    Ashmore, P. E. How do gravel-bed rivers braid?. Can. J. Earth Sci. 28, 326–341 (1991).

    ADS  Google Scholar 

  • 95.

    Ferguson, R. Understanding braiding processes in gravel-bed rivers: progress and unsolved problems. Geol. Soc. Lond. Spec. Publ. 75, 73–87 (1993).

    ADS  Google Scholar 

  • 96.

    Scorpio, V. et al. Channel changes of the Adige River (Eastern Italian Alps) over the last 1000 years and identification of the historical fluvial corridor. J. Maps 14, 680–691 (2018).

    Google Scholar 

  • 97.

    Comiti, F. How natural are Alpine mountain rivers? Evidence from the Italian Alps. Earth Surf. Proc. Land. 37, 693–707 (2012).

    ADS  Google Scholar 

  • 98.

    Marchese, E., Scorpio, V., Fuller, I., McColl, S. & Comiti, F. Morphological changes in Alpine rivers following the end of the Little Ice Age. Geomorphology 295, 811–826 (2017).

    ADS  Google Scholar 

  • 99.

    Carolli, M. & Pusch, M. HyMoCARES project WPT1 Ecosystem Services (ES) assessment framework D. T1. 2.1-Report on functional dependencies of ES on river hydromorphology. (2018).


  • Source: Ecology - nature.com

    Author Correction: Political dynamics and governance of World Heritage ecosystems

    Special issue: Biofunctional gels