in

Thiolated arsenic species observed in rice paddy pore waters

  • 1.

    Stone, R. Arsenic and paddy rice: a neglected cancer risk? Science 321, 184–185 (2008).

    • Article
    • Google Scholar
  • 2.

    Ma, J. F. et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl Acad. Sci. 105, 9931–9935 (2008).

    • Article
    • Google Scholar
  • 3.

    Wang, P., Zhang, W., Mao, C., Xu, G. & Zhao, F.-J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J. Exp. Bot. 67, 6051–6059 (2016).

    • Article
    • Google Scholar
  • 4.

    Ye, Y. et al. OsPT4 contributes to arsenate uptake and transport in rice. Front. Plant Sci. 8, 2197 (2017).

    • Article
    • Google Scholar
  • 5.

    Xu, X. Y., McGrath, S. P., Meharg, A. A. & Zhao, F. J. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42, 5574–5579 (2008).

    • Article
    • Google Scholar
  • 6.

    Jia, Y. et al. Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 47, 3141–3148 (2013).

    • Article
    • Google Scholar
  • 7.

    Lomax, C. et al. Methylated arsenic species in plants originate from soil microorganisms. N. Phytol. 193, 665–672 (2012).

    • Article
    • Google Scholar
  • 8.

    Zhao, F.-J., Zhu, Y.-G. & Meharg, A. A. Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ. Sci. Technol. 47, 3957–3966 (2013).

    • Article
    • Google Scholar
  • 9.

    Meharg, A. A. & Zhao, F.-J. (eds) in Arsenic & Rice 71–101 (Springer, 2012).

  • 10.

    Besold, J. et al. Monothioarsenate transformation kinetics determining arsenic sequestration by sulfhydryl groups of peat. Environ. Sci. Technol. 52, 7317–7326 (2018).

    • Article
    • Google Scholar
  • 11.

    Wallschläger, D. & London, J. Determination of methylated arsenic–sulfur compounds in groundwater. Environ. Sci. Technol. 42, 228–234 (2007).

    • Article
    • Google Scholar
  • 12.

    Conklin, S. D., Fricke, M. W., Creed, P. A. & Creed, J. T. Investigation of the pH effects on the formation of methylated thio-arsenicals, and the effects of pH and temperature on their stability. J. Anal. At. Spectrom. 23, 711–716 (2008).

    • Article
    • Google Scholar
  • 13.

    Planer-Friedrich, B., London, J., McCleskey, R. B., Nordstrom, D. K. & Wallschläger, D. Thioarsenates in geothermal waters of Yellowstone National Park: determination, preservation, and geochemical importance. Environ. Sci. Technol. 41, 5245–5251 (2007).

    • Article
    • Google Scholar
  • 14.

    Planer-Friedrich, B., Schaller, J., Wismeth, F., Mehlhorn, J. & Hug, S. J. Monothioarsenate occurrence in Bangladesh groundwater and its removal by ferrous and zero-valent iron technologies. Environ. Sci. Technol. 52, 5931–5939 (2018).

    • Article
    • Google Scholar
  • 15.

    Planer-Friedrich, B. & Wallschläger, D. A critical investigation of hydride generation-based arsenic speciation in sulfidic waters. Environ. Sci. Technol. 43, 5007–5013 (2009).

    • Article
    • Google Scholar
  • 16.

    Smieja, J. A. & Wilkin, R. T. Preservation of sulfidic waters containing dissolved As(III). J. Environ. Monit. 5, 913–916 (2003).

    • Article
    • Google Scholar
  • 17.

    Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).

    • Article
    • Google Scholar
  • 18.

    Wind, T. & Conrad, R. Localization of sulfate reduction in planted and unplanted rice field soil. Biogeochemistry 37, 253–278 (1997).

    • Article
    • Google Scholar
  • 19.

    Ayotade, K. A. Kinetics and reactions of hydrogen sulphide in solution of flooded rice soils. Plant Soil 46, 381–389 (1977).

    • Article
    • Google Scholar
  • 20.

    Saalfield, S. L. & Bostick, B. C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 43, 8787–8793 (2009).

    • Article
    • Google Scholar
  • 21.

    Burton, E. D., Johnston, S. G. & Kocar, B. D. Arsenic mobility during flooding of contaminated soil: the effect of microbial sulfate reduction. Environ. Sci. Technol. 48, 13660–13667 (2014).

    • Article
    • Google Scholar
  • 22.

    Xu, L. Y. et al. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. J. Hazard. Mater. 301, 538–546 (2016).

    • Article
    • Google Scholar
  • 23.

    Crusciol, C. A. C., Nascente, A. S., Soratto, R. P. & Rosolem, C. A. Upland rice growth and mineral nutrition as affected by cultivars and sulfur availability. Soil Sci. Soc. Am. J. 77, 328–335 (2013).

    • Article
    • Google Scholar
  • 24.

    Schütz, H., Holzapfel-Pschorn, A., Conrad, R., Rennenberg, H. & Seiler, W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J. Geophys. Res. Atmos. 94, 16405–16416 (1989).

    • Article
    • Google Scholar
  • 25.

    Minamikawa, K., Sakai, N. & Hayashi, H. The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan. Agric. Ecosyst. Environ. 107, 371–379 (2005).

    • Article
    • Google Scholar
  • 26.

    Fan, J., Xia, X., Hu, Z., Ziadi, N. & Liu, C. Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil Environ. 59, 169–174 (2013).

    • Article
    • Google Scholar
  • 27.

    Zhang, J. et al. Influence of sulfur on transcription of genes involved in arsenic accumulation in rice grains. Plant Mol. Biol. Report. 34, 556–565 (2016).

    • Article
    • Google Scholar
  • 28.

    Jia, Y. & Bao, P. Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. J. Soil. Sediment. 15, 1960–1967 (2015).

    • Article
    • Google Scholar
  • 29.

    Zeng, X. et al. Effects of sulfate application on inhibiting accumulation and alleviating toxicity of arsenic in panax notoginseng grown in arsenic-polluted soil. Water Air Soil Poll. 227, 148 (2016).

    • Article
    • Google Scholar
  • 30.

    Baker, M., Inniss, W., Mayfield, C., Wong, P. & Chau, Y. Effect of pH on the methylation of mercury and arsenic by sediment microorganisms. Environ. Technol. Lett. 4, 89–100 (1983).

    • Article
    • Google Scholar
  • 31.

    Cullen, W. R. et al. Methylated and thiolated arsenic species for environmental and health research—a review on synthesis and characterization. J. Environ. Sci. 49, 7–27 (2016).

    • Article
    • Google Scholar
  • 32.

    Kim, Y.-T., Lee, H., Yoon, H.-O. & Woo, N. C. Kinetics of dimethylated thioarsenicals and the formation of highly toxic dimethylmonothioarsinic acid in environment. Environ. Sci. Technol. 50, 11637–11645 (2016).

    • Article
    • Google Scholar
  • 33.

    Kerl, C. F., Rafferty, C., Clemens, S. & Planer-Friedrich, B. Monothioarsenate uptake, transformation, and translocation in rice plants. Environ. Sci. Technol. 52, 9154–9161 (2018).

    • Article
    • Google Scholar
  • 34.

    Kerl, C. F. et al. Methylated thioarsenates and monothioarsenate differ in uptake, transformation, and contribution to total arsenic translocation in rice plants. Environ. Sci. Technol. 53, 5787–5796 (2019).

    • Article
    • Google Scholar
  • 35.

    Ackerman, A. H. et al. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environ. Sci. Technol. 39, 5241–5246 (2005).

    • Article
    • Google Scholar
  • 36.

    Ayotade, K. A. Kinetics and reactions of hydrogen-sulfide in solution of flooded rice soils. Plant Soil 46, 381–389 (1977).

    • Article
    • Google Scholar
  • 37.

    Tang, L., Yang, J. & Shen, X. Effects of additional iron-chelators on Fe 2+-initiated lipid peroxidation: evidence to support the Fe 2+… Fe 3+ complex as the initiator. J. Inorg. Biochem. 68, 265–272 (1997).

  • 38.

    Colman, B. P. Understanding and eliminating iron interference in colorimetric nitrate and nitrite analysis. Environ. Monit. Assess. 165, 633–641 (2010).

    • Article
    • Google Scholar
  • 39.

    Suess, E., Wallschläger, D. & Planer-Friedrich, B. Stabilization of thioarsenates in iron-rich waters. Chemosphere 83, 1524–1531 (2011).

    • Article
    • Google Scholar
  • 40.

    Zang, V. & Van Eldik, R. Kinetics and mechanism of the autoxidation of iron (II) induced through chelation by ethylenediaminetetraacetate and related ligands. Inorg. Chem. 29, 1705–1711 (1990).

    • Article
    • Google Scholar
  • 41.

    Suess, E. et al. Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy. Anal. Chem. 81, 8318–8326 (2009).

    • Article
    • Google Scholar
  • 42.

    Ministry of Ecology and Environment of the People’s Republic of China Soil Environment Quality Risk Control Standard for Soil Contamination of Agricultural Land GB 15618-2018 (Ministry of Ecology and Environment, 2018).

  • 43.

    Zhao, F.-J., Ma, Y., Zhu, Y.-G., Tang, Z. & McGrath, S. P. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49, 750–759 (2014).

    • Article
    • Google Scholar
  • 44.

    Ratering, S. & Schnell, S. Localization of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48, 341–365 (2000).

    • Article
    • Google Scholar
  • 45.

    Stroud, J. L. et al. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ. Sci. Technol. 45, 4262–4269 (2011).

    • Article
    • Google Scholar
  • 46.

    Zhang, S.-Y. et al. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ. Sci. Technol. 49, 4138–4146 (2015).

    • Article
    • Google Scholar
  • 47.

    Zhao, F.-J. et al. Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ. Sci. Technol. 47, 7147–7154 (2013).

    • Article
    • Google Scholar
  • 48.

    Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    • Article
    • Google Scholar
  • 49.

    Lohmayer, R., Kappler, A., Lösekann-Behrens, T. & Planer-Friedrich, B. Sulfur species as redox partners and electron shuttles for ferrihydrite reduction by Sulfurospirillum deleyianum. Appl. Environ. Microb. 80, 3141–3149 (2014).

    • Article
    • Google Scholar
  • 50.

    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    • Article
    • Google Scholar
  • 51.

    De’Ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).

    • Google Scholar

  • Source: Ecology - nature.com

    Simple, solar-powered water desalination

    An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health