in

Towards a global-scale soil climate mitigation strategy

  • 1.

    Friedlingstein, P. et al. Global carbon budget (2019). Earth Syst. Sci. Data 11, 1783–1838 (2019).

  • 2.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    ADS  Article  CAS  Google Scholar 

  • 4.

    IPCC (2019): Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (eds Shukla, P. R. et al.) https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf.

  • 5.

    Rumpel, C. et al. Put more carbon in soils to meet Paris climate pledges. Nature 564, 32–34 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Food and Agriculture organisation of the united nations (FAO): Recarbonization of Global Soils – A dynamic response to offset global emissions, FAO, http://www.fao.org/3/i7235en/I7235EN.pdf (2019).

  • 7.

    Van Groenigen, J. W. et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ. Sci. Technol. 51, 4738–4739 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 8.

    De Vries, W. Soil carbon 4 per mille: a good initiative but let’s manage not only the soil but also the expectations. Geoderma 309, 111–112 (2018).

    ADS  Article  Google Scholar 

  • 9.

    Rumpel, C. et al. The 4p1000 Initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49, 350 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    IUSS Working Group WRB, (2015): World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106 (FAO, Rome, 2015).

  • 11.

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    ADS  Article  Google Scholar 

  • 12.

    Lal, R. Digging deeper: a holistic perspective of factors affecting SOC sequestration. Global Change Biol. 24, https://doi.org/10.1111/gcb.14054 (2018).

  • 13.

    Sykes, A. J. et al. Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biol. 1–24, https://doi.org/10.1111/gcb.14844 (2019).

  • 14.

    Koch, A. et al. Soil security: solving the global soil crisis. Glob. Policy 4, 1758–5880 (2013).

    Article  Google Scholar 

  • 15.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    ADS  Article  Google Scholar 

  • 17.

    Sanderman, J., Heng, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Gomiero, T. Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8, 1–4 (2016).

    Article  Google Scholar 

  • 19.

    Lal, R. Carbon sequestration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 815–830 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Pan, G., Smith, P. & Pan, W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosyst. Environ. 129, 344–348 (2009).

    Article  Google Scholar 

  • 21.

    Oldfield, E. E., Bradford, M. A. & Wood, S. A. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5, 15–32 (2019).

    CAS  Article  Google Scholar 

  • 22.

    van Oort, P. A. J. et al. Can yield gap analysis be used to inform R&D prioritisation? Glob. Food Security 12, 109–118 (2017).

    Article  Google Scholar 

  • 23.

    Gibbs, H. K. & Salmon, J. M. Mapping the world’s degraded lands. Appl. Geogr. 57, 12–21 (2015).

    Article  Google Scholar 

  • 24.

    Li, C., Frolking, S. & Butterbach-Bahl, K. Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Climatic Change 72, 321–338 (2005).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Corsi, S., Friedrich, T., Kassam, A., Pisante, M. & de Moraes Sà, J. Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture: a literature review. Integrated Crop Management, Vol. 16, 89, ISBN 978-92-5-107187-8. (Food and Agriculture Organization of the United Nations (FAO) editor, Rome, 2012).

  • 26.

    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Paustian, K., Larson, E., Kent, J., Marx, E. & Swan, A. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).

    Article  Google Scholar 

  • 28.

    Smith, P. et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26, 219–241 (2020).

    ADS  Article  Google Scholar 

  • 29.

    Smith, P., Powlson, S. D. S., Glendining, M. J. & Smith, J. U. Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob. Change Biol. 3, 67–79 (1997).

    ADS  Article  Google Scholar 

  • 30.

    Fujisaki, K. et al. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: a synthesis. Agriculture, Ecosyst. Environ. 259, 147–158 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Luo, Z., Viscarra Rossel, R. A. & Shi, Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Global Chang Biol. https://doi.org/10.1111/gcb.15157 (2020).

  • 32.

    Poulton, P., Johnston, J., MacDonald, A. & White, R. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at Rothamsted Research, UK. Global Change Biol. 24, 2563–2584 (2018).

    ADS  Article  Google Scholar 

  • 33.

    Antle, J. M., Capalbo, S. M., Mooney, S., Elliott, E. T. & Paustian, K. H. Spatial heterogeneity and the efficient design of carbon sequestration policies for agriculture. J. Environ. Econ. Manag. 46, 231–250 (2003).

    MATH  Article  Google Scholar 

  • 34.

    Mooney, S., Antle, J., Capalbo, S. & Paustian, K. Design and costs of a measurement protocol for trades in soil carbon credits. Can. J. Agric. Econ./Rev. canadienne d’agroeconomie 52, 257–287 (2004).

    Article  Google Scholar 

  • 35.

    Mooney, S., Gerow, K., Antle, J. M., Capalbo, S. M. & Paustian, K. Reducing standard errors by incorporating spatial autocorrelation into a measurement scheme for soil carbon credits. Climatic Change 80, 55–72 (2007).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Paustian, K. et al. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manag. 10, 567–587 (2019).

    CAS  Article  Google Scholar 

  • 37.

    Falloon, P. D. & Smith, P. Modelling refractory soil organic matter. Biol. Fert. Soils 20, 388–398 (2000).

    Google Scholar 

  • 38.

    Gulde, S., Chung, H., Amelung, W., Chi, C. & Six, J. Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Sci. Soc. Am. J. 72, 605–612 (2008).

    ADS  CAS  Article  Google Scholar 

  • 39.

    van Wesemael, B. et al. An indicator for organic matter dynamics in temperate agricultural soils. Agriculture, Ecosyst. Environ. 274, 62–75 (2019).

    Article  Google Scholar 

  • 40.

    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma, 333, https://doi.org/10.1016/j.geoderma.2018.07.026 (2019).

  • 41.

    van Ittersuma, M. K. et al. Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4–17 (2013).

    Article  Google Scholar 

  • 42.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Technical Summary. http://www.fao.org/3/a-i5126e.pdf (Food and Agriculture Organization of the United Nations, 2015).

  • 44.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).

    CAS  Article  Google Scholar 

  • 45.

    Kögel-Knabner, I. & Amelung, W. Soil organic matter in major pedogenetic soil groups. Geoderma (2020).

  • 46.

    Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    ADS  Google Scholar 

  • 47.

    Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).

  • 48.

    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—a meta-analysis. Agriculture Ecosyst. Environ. 200, 33–41 (2015).

    CAS  Article  Google Scholar 

  • 49.

    Conant, R. T., Cerri, C. E. P., Osborne, B., B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Cheng, K., Zheng, J., Nayak, D., Smith, P. & Pan, G. Re-evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in china’s cropland. Soil Use Manag. 29, 501–509 (2013).

    Article  Google Scholar 

  • 51.

    Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Driessen, P. M., Deckers, J., & Spaargaren, O. Lecture Notes of the Major Soils of the World. ((World Soil Resources Reports: FAO; Vol. 94). Rome: Food and Agriculture Organization of the United Nations (FAO), 2001).

  • 53.

    Woolf, D. et al. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 54.

    Ye, L. et al. Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use Manag. 36, 2–18 (2020).

    Article  Google Scholar 

  • 55.

    The California Department of Fish and Wildlife (CDFW): Wetlands restoration for greenhouse gas reduction program – Quantification Methodology and Wetlands Program Benefits http://wildlife.ca.gov/conservation/watersheds/greenhouse-gas-reduction (2018).

  • 56.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Change 10, 287–295 (2020).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Prananto, J. P., Minasny, B., Comeau, L. P. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biol. https://doi.org/10.1111/gcb.15147 (2020).

  • 60.

    Wilson, D. et al. Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat, 17, 1–28 (2016).

    Google Scholar 

  • 61.

    Knox, S. H. et al. Agricultural peatland restoration: effects of land‐use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento‐San Joaquin Delta. Global Change Biol. 21, 750–765 (2015).

    ADS  Article  Google Scholar 

  • 62.

    Folberth, C. et al. The global cropland-sparing potential of high-yield farming. Nat. Sustainability 3, 281–289 (2020).

    Article  Google Scholar 

  • 63.

    Mooney, S. & Williams, J. Private and public values of soil carbon management. In Soil Carbon Management: Economic, Environmental and Societal Benefits. (eds Kimble, Rice, J. C. et al.) Chapter 4, pp 67–98 (Taylor and Francis Group, LLC, 2007).

  • 64.

    Lal, R. Societal value of soil carbon. J. Soil Water Conserv. 69, 186A–192 A (2014).

    Article  Google Scholar 

  • 65.

    Graves, A. R. et al. The total costs of soil degradation in England and Wales. Ecol. Econ. 119, 399–413 (2015).

    Article  Google Scholar 

  • 66.

    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustainability 2, 2–4 (2019).

    Article  Google Scholar 

  • 67.

    Tang, K., Kragt, M. E., Hailu, A. & Ma, C. Carbon farming economics: what have we learned? J. Environ. Manag. 172, 49–57 (2016).

    Article  Google Scholar 

  • 68.

    Kurkalova, L., Kling, C. & Zhao, J. Green subsidies in agriculture: estimating the adoption costs of conservation tillage from observed behavior. Canadian J. Agric. Econ. 54, 247–267 (2006).

    Article  Google Scholar 

  • 69.

    Levin, K., Cashore, B., Bernstein, S. & Auld, G. Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change. Policy Sci. 45, 123–152 (2012).

    Article  Google Scholar 

  • 70.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 487, 337–478 (2011).

    ADS  Article  CAS  Google Scholar 

  • 71.

    Powlson, D. S., Whitmore, A. P. & Goulding, K. W. T. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Artic. Eur. J. Soil Sci. 62, 42–55 (2011).

    CAS  Article  Google Scholar 

  • 72.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 73.

    Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).

    CAS  Article  Google Scholar 

  • 74.

    Rütting, T., Aronsson, H. & Delin, S. Efficient use of nitrogen in agriculture. Nutrient Cycl. Agroecosystems 110, 1–5 (2018).

    Article  Google Scholar 

  • 75.

    Houlton, B. Z. et al. A world of cobenefits: solving the global nitrogen challenge. Earth’s Future 7, 865–872 (2019).

    ADS  Article  Google Scholar 

  • 76.

    Intergovernmental Panel on Climate Change- IPCC: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S. et al. (eds)) pp. 996 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007).

  • 77.

    Nayak, A. K. et al. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: a review. Sci. Total Environ. 665, 890–912 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 78.

    Nathes, J. A., Lal, R., Weldesemayat Siles, G. & Dasa, A. K. Managing India’s small landholder farms for food security and achieving the “4 per Thousand” target. Sci. Total Environ. 634, 1024–1033 (2018).

    ADS  Article  CAS  Google Scholar 

  • 79.

    OCDE: Agricultural Policy Monitoring and Evaluation. https://doi.org/10.1787/39bfe6f3-en (OECD Publishing, Paris, 2019).

  • 80.

    Malhotra, A. et al. The landscape of soil carbon data: emerging questions, synergies and databases. Prog. Phys. Geogr. 43, 707–717 (2019).

    Article  Google Scholar 

  • 81.

    Chabbi, A., Loescher, H. W., Tye, M. R. & Hudnut, D. Integrated Experimental Research Infrastructures: a paradigm shift to face an uncertain world and innovate for societal benefit. In Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (eds Abad Chabbi, A. & Henry, W. L.) 3–26 (CRC Taylor & Francis Group, 2017).

  • 82.

    Sterly, S. et al. Research for AGRI Committee—A Comparative Analysis of Global Agricultural Policies: Lessons for the Future CAP, European Parliament (Policy Department for Structural and Cohesion Policies, Brussels, 2018).

  • 83.

    Pinter, L., Pintér, L., Hardi, P., Martinuzzi, A. & Hall, J. Bellagio STAMP: principles for sustainability assessment and measurement. Ecol. Indic. 17, 20–28 (2012).

    Article  Google Scholar 

  • 84.

    Ugarte, C., Kwon, H. K. & Wander, M. Conservation management and ecosystem services in midwestern United States agricultural systems. J. Soil Water Conserv. 73, 422–433 (2018).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Moist heat stress extremes in India enhanced by irrigation

    These bizarre ancient species are rewriting animal evolution