in

Tracing human mobility in central Europe during the Upper Paleolithic using sub-seasonally resolved Sr isotope records in ornaments

  • 1.

    Duarte, C. et al. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Natl. Acad. Sci. 96, 7604–7609 (1999).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Giacobini, G. Richness and diversity of burial rituals in the Upper Paleolithic. Diogenes 54, 19–39 (2007).

    Google Scholar 

  • 3.

    Vanhaeren, M. & d’Errico, F. The Body Ornaments Associated with the Burial. in Portrait of the Artist as a Child. The Gravettian Human Skeleton from the Abrigo do Lagar Velho and its Archeological Contex (eds. J. Zilhão E & Trinkaus, E.) 154–186 (2003).

  • 4.

    Einwögerer, T. et al. Upper Palaeolithic infant burials. Nature 444, 285 (2006).

    ADS  PubMed  Google Scholar 

  • 5.

    Svoboda, J. The Burials: Ritual and Taphonomy. in Early Modern Human Evolution in Central Europe:The People of Dolní Věstonice and Pavlov (eds. Trinkaus, E. & Svoboda, J.) 15–26 (OxfordUniversityPress, 2006).

  • 6.

    Pettitt, P. The Palaeolithic Origins of Human Burial., https://doi.org/10.4324/9780203813300 (Routledge, 2010).

  • 7.

    Wilczyński, J. et al. A Mid Upper Palaeolithic Child Burial from Borsuka Cave (Southern Poland). Int. J. Osteoarchaeol. 26, 151–162 (2016).

    Google Scholar 

  • 8.

    Svoboda, J. A. The Bohunician and the Aurignacian. in The Chronology of the Aurignacian and of the Transitional Technocomplexes: Dating, Stratigraphies, Cultural Implications. The Chronology of the Aurignacian and of the Transitional Technocomplexes: Dating, Stratigraphies, Cultural Implications. Proceedings 123–131 (2003).

  • 9.

    Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Wild, E. M., Teschler-Nicola, M., Kutschera, W., Steier, P. & Wanek, W. 14C Dating of Early Upper Palaeolithic Human and Faunal Remains from Mladeč. In Early Modern Humans at the Moravian Gate 149–158, https://doi.org/10.1007/978-3-211-49294-9_7 (Springer Vienna)..

  • 11.

    Oliva, M. The Upper Paleolithic Finds from the Mladeč Cave. In Early Modern Humans at the Moravian Gate 41–74, https://doi.org/10.1007/978-3-211-49294-9_4 (Springer Vienna)..

  • 12.

    Kozłowski, J. K. & Kozłowski, S. K. Epoka kamienia na ziemiach polskich. (Państwowe Wydawnictwo Naukowe, 1977).

  • 13.

    Valde-Nowak, P. Człowiek pierwotny w Jaskini Obłazowe. Pieniny Przyr. i Człowiek 10, 133–146 (2008).

    Google Scholar 

  • 14.

    Valde-Nowak, P. Worked Conus shells as Pavlovian fingerprint: Obłazowa Cave, Southern Poland. Quat. Int. 359–360, 153–156 (2015).

    Google Scholar 

  • 15.

    Svoboda, J. A. The Gravettian on the Middle Danube. Paleo 19, 203–220 (2007).

    Google Scholar 

  • 16.

    Vogel, J. C., Eglington, B. & Auret, J. M. Isotope fingerprints in elephant bone and ivory. Nature 346, 747–749 (1990).

    ADS  CAS  Google Scholar 

  • 17.

    Van Der Merwe, N. J. et al. Source-area determination of elephant ivory by isotopic analysis. Nature 346, 744–746 (1990).

    ADS  Google Scholar 

  • 18.

    Beard, B. L. & Johnson, C. M. Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J. Forensic Sci. 45, 1049–61 (2000).

    CAS  PubMed  Google Scholar 

  • 19.

    Bentley, R. A. Strontium isotopes from the earth to the archaeological skeleton: A review. J. Archaeol. Method Theory 13, 135–187 (2006).

    Google Scholar 

  • 20.

    Scheeres, M. et al. Evidence for “Celtic migrations”? Strontium isotope analysis at the early La Tène (LT B) cemeteries of Nebringen (Germany) and Monte Bibele (Italy). J. Archaeol. Sci. 40, 3614–3625 (2013).

    CAS  Google Scholar 

  • 21.

    Parker Pearson, M. et al. Beaker people in Britain: migration, mobility and diet. Antiquity 90, 620–637 (2016).

    Google Scholar 

  • 22.

    Lugli, F. et al. Strontium and stable isotope evidence of human mobility strategies across the Last Glacial Maximum in southern Italy. Nat. Ecol. Evol. 3, 905–911 (2019).

    PubMed  Google Scholar 

  • 23.

    Hillson, S. Teeth., https://doi.org/10.1017/CBO9780511614477 (Cambridge University Press, 2005).

  • 24.

    Müller, W. & Anczkiewicz, R. Accuracy of laser-ablation (LA)-MC-ICPMS Sr isotope analysis of (bio)apatite-a problem reassessed. J. Anal. At. Spectrom. 31, 259–269 (2016).

    Google Scholar 

  • 25.

    Nowak, J. Jaskinia Borsuka w Dubiu. Jaskinie 3, 28–29 (2007).

    Google Scholar 

  • 26.

    Wilczyński, J. et al. Faunal remains from Borsuka Cave – an example of local climate variability during Late Pleistocene in southern Poland. Acta Zool. Cracoviensia 55, 131–155 (2012).

    Google Scholar 

  • 27.

    Valde-Nowak, P. et al. Late middle palaeolithic occupations in Ciemna Cave, southern Poland. J. F. Archaeol. 41, 193–210 (2016).

    Google Scholar 

  • 28.

    Krajcarz, M. T. & Madeyska, T. Application of the weathering parameters of bones to stratigraphical interpretation of the sediments from two caves (Deszczowa Cave and Nietoperzowa Cave, Kraków-Częstochowa Upland, Poland). Stud. Quat. 27, 36–43 (2010).

    Google Scholar 

  • 29.

    Wilczyński, J., Wojenka, M., Wojtal, P., Szczepanek, A. & Sobieraj, D. Human occupation of the Borsuka Cave (Southern Poland) – from Upper Paleolithic to the Post-Mediaeval Period. Eurasian Prehistory 9, 77–91 (2012).

    Google Scholar 

  • 30.

    Wojenka, M., Wilczyński, J. & Sobieraj, D. Badania archeologiczne w Jaskini Żarskiej w Żarach, gm. Krzeszowice, pow. Kraków w 2011 roku. Prądnik 22 (2012).

  • 31.

    Krajcarz, M. T. Geochemical evidence for postsedimentary re-deposition of animal bones at multilayered sites. The case of Biśnik Cave, southern Poland. Archaeol. Pol. 49, 153–162 (2013).

    Google Scholar 

  • 32.

    Wojtal, P. Zooarchaeological studies of the Late Pleistocene sites in Poland. (Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, 2007).

  • 33.

    Cyrek, K. et al. Excavation in the Deszczowa Cave (Kroczyckie Rocks, Częstochowa Upland, Central Poland). Folia Quat. 71, 5–84 (2000).

    Google Scholar 

  • 34.

    Alexandrowicz, S. W. et al. Excavations in the Zawalona Cave at Mników (Cracow Upland, southern Poland). Folia Quat. 63, 43–76 (1992).

    Google Scholar 

  • 35.

    Nadachowski, A. Fossil fauna of the deposits of Mamutowa Cave in Wierzchowie near Kraków–Poland. Folia Quat. 48, 17–36 (1976).

    Google Scholar 

  • 36.

    Bochenski, Z. Szczątki kopalne ptaków z Jaskini Mamutowej.(Fossil remains of birds from Mamutowa Cave). Folia Quat. 54, 1–24 (1981).

    Google Scholar 

  • 37.

    Vanhaeren, M. & d’Errico, F. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J. Archaeol. Sci. 33, 1105–1128 (2006).

    Google Scholar 

  • 38.

    Bronk Ramsey, C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337–360 (2009).

    Google Scholar 

  • 39.

    Reimer, P. J. et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 1869–1887 (2013).

    CAS  Google Scholar 

  • 40.

    Zaripov, R. Z. K metodike opredelennyavo zrasta losey//Prirodnye resursy Volzhsko-Komskogokraya. Nauka 30–45 (1964).

  • 41.

    Price, T. D., Burton, J. H. & Bentley, R. A. The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44, 117–135 (2002).

    CAS  Google Scholar 

  • 42.

    Hillson, S. Tooth Development in Human Evolution and Bioarchaeology., https://doi.org/10.1017/CBO9780511894916 (Cambridge University Press, 2014).

  • 43.

    Reid, D. J. & Dean, M. C. Variation in modern human enamel formation times. J. Hum. Evol. 50, 329–346 (2006).

    CAS  PubMed  Google Scholar 

  • 44.

    Rozzi, F. V. R. & de Castro, J. M. B. Surprisingly rapid growth in Neanderthals. Nature 428, 936–939 (2004).

    ADS  Google Scholar 

  • 45.

    Smith, T. M. et al. Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proc. Natl. Acad. Sci. USA 107, 20923–20928 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Hoppe, K. A., Stover, S. M., Pascoe, J. R. & Amundson, R. Tooth enamel biomineralization in extant horses: Implications for isotopic microsampling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 355–365 (2004).

    Google Scholar 

  • 47.

    Iinuma, Y. M. et al. Dental Incremental Lines in Sika Deer (Cervus nippon); Polarized Light and Fluorescence Microscopy of Ground Sections. J. Vet. Med. Sci. 66, 665–669 (2004).

    PubMed  Google Scholar 

  • 48.

    Tafforeau, P., Bentaleb, I., Jaeger, J. J. & Martin, C. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: Potential implications for palaeoenvironmental isotopic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 206–227 (2007).

    Google Scholar 

  • 49.

    Bendrey, R., Vella, D., Zazzo, A., Balasse, M. & Lepetz, S. Exponentially decreasing tooth growth rate in horse teeth: Implications for isotopic analyses. Archaeometry 57, 1104–1124 (2015).

    CAS  Google Scholar 

  • 50.

    Dirks, W., Bromage, T. G. & Agenbroad, L. D. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quat. Int. 255, 79–85 (2012).

    Google Scholar 

  • 51.

    Metcalfe, J. Z. & Longstaffe, F. J. Mammoth tooth enamel growth rates inferred from stable isotope analysis and histology. Quat. Res. 77, 424–432 (2012).

    CAS  Google Scholar 

  • 52.

    Nacarino-Meneses, C., Jordana, X., Orlandi-Oliveras, G. & Köhler, M. Reconstructing molar growth from enamel histology in extant and extinct Equus. Sci. Rep. 7, 1–12 (2017).

    ADS  CAS  Google Scholar 

  • 53.

    Jordana, X., Marín-Moratalla, N., Moncunill-Solé, B. & Köhler, M. Ecological and life-history correlates of enamel growth in ruminants (Artiodactyla). Biol. J. Linn. Soc. 112, 657–667 (2014).

    Google Scholar 

  • 54.

    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).

    Google Scholar 

  • 55.

    Budd, P., Montgomery, J., Barreiro, B. & Thomas, R. G. Differential diagenesis of strontium in archaeological human dental tissues. Appl. Geochemistry 15, 687–694 (2000).

    CAS  Google Scholar 

  • 56.

    Kohn, M. J. & Cerling, T. E. Stable Isotope Compositions of Biological Apatite. Rev. Mineral. Geochemistry 48, 455–488 (2002).

    ADS  CAS  Google Scholar 

  • 57.

    Hoppe, K. A., Koch, P. L. & Furutani, T. T. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. Int. J. Osteoarchaeol. 13, 20–28 (2003).

    Google Scholar 

  • 58.

    Kohn, M. J. Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochim. Cosmochim. Acta 72, 3758–3770 (2008).

    ADS  CAS  Google Scholar 

  • 59.

    Hinz, E. A. & Kohn, M. J. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochim. Cosmochim. Acta 74, 3213–3231 (2010).

    ADS  CAS  Google Scholar 

  • 60.

    Müller, W. et al. Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically-defined LA-ICPMS profiles. Geochim. Cosmochim. Acta 255, 105–126 (2019).

    ADS  Google Scholar 

  • 61.

    Hedges, R. E. M. & Millard, A. R. Bones and Groundwater: Towards the Modelling of Diagenetic Processes. J. Archaeol. Sci. 22, 155–164 (1995).

    Google Scholar 

  • 62.

    Pike, A. W. G. & Hedges, R. E. M. & Van Calsteren, P. U- series dating of bone using the diffusion- adsorption model. Geochim. Cosmochim. Acta 66, 4273–4286 (2002).

    ADS  CAS  Google Scholar 

  • 63.

    Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).

    CAS  Google Scholar 

  • 64.

    Dauphin, Y. & Williams, C. T. Diagenetic trends of dental tissues. Comptes Rendus – Palevol 3, 583–590 (2004).

    Google Scholar 

  • 65.

    Jacques, L. et al. Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 200–210 (2008).

    Google Scholar 

  • 66.

    Hoffmann, D. L., Paterson, B. A. & Jonckheere, R. Measurements of the uranium concentration and distribution in a fossil equid tooth using fission tracks, TIMS and laser ablation ICPMS: Implications for ESR dating. Radiat. Meas. 43, 5–13 (2008).

    CAS  Google Scholar 

  • 67.

    Maurer, A. F., Person, A., Tütken, T., Amblard-Pison, S. & Ségalen, L. Bone diagenesis in arid environments: An intra-skeletal approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 17–29 (2014).

    Google Scholar 

  • 68.

    Poszwa, A., Dambrine, E., Pollier, B. & Atteia, O. A comparison between Ca and Sr cycling in forest ecosystems. Plant Soil 225, 299–310 (2012).

    Google Scholar 

  • 69.

    Kohn, M. J., Morris, J. & Olin, P. Trace element concentrations in teeth – a modern Idaho baseline with implications for archeometry, forensics, and palaeontology. J. Archaeol. Sci. 40, 1689–1699 (2013).

    CAS  Google Scholar 

  • 70.

    Renecker, L. A. & Hudson, R. J. Seasonal Foraging Rates of Free-Ranging Moose. J. Wildl. Manage. 50, 143 (1986).

    Google Scholar 

  • 71.

    Renecker, L. A. & Hudson, R. J. Estimation of Dry Matter Intake of Free-Ranging Moose. J. Wildl. Manage. 49, 785 (1985).

    Google Scholar 

  • 72.

    Sweanor, P. Y. & Sandegren, F. Migratory behavior of related moose. Ecography (Cop.). 11, 190–193 (1988).

    Google Scholar 

  • 73.

    Sweanor, P. Y. & Sandegren, F. Winter-Range Philopatry of Seasonally Migratory Moose. J. Appl. Ecol. 26, 25 (1989).

    Google Scholar 

  • 74.

    Joly, K., Craig, T., Sorum, M. S., Mcmillan, J. S. & Spindler, M. A. Moose movement patterns in the Upper Koyukuk River drainage, Northcenteral Alaska. Alces 51, 87–96 (2015).

    Google Scholar 

  • 75.

    Lillie, M. C. et al. First isotope analysis and new radiocarbon dating of Trypillia (Tripolye) farmers from Verteba Cave, Bilche Zolote, Ukraine. Doc. Praehist. 44, 306–325 (2018).

    Google Scholar 

  • 76.

    Nerudová, Z., Nyvltova Fisakova, M. & Míková, J. Palaeoenvironmental analyses of animal remains from the Kůlna Cave (Moravian Karst, Czech Republic). Quartär 61, 147–157 (2014).

    Google Scholar 

  • 77.

    Vašinová Galiová, M. et al. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 105, 235–243 (2013).

    PubMed  Google Scholar 

  • 78.

    Pryor, A. J. E., Sázelová, S., Gamble, C. S. & Pike, A. W. G. Season of death and strontium/oxygen isotope data for seasonal mobility of three reindeer prey. In Dolní Vestonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology (ed. Svoboda, J.) 147–159 (Academy of Sciences of the Czech Republic; Institute of Archaeology, 2016).

  • 79.

    Prohaska, T. et al. Non-destructive Determination of 87Sr/86Sr Isotope Ratios in Early Upper Paleolithic Human Teeth from the Mladeč Caves — Preliminary Results. in Early Modern Humans at the Moravian Gate 505–514, https://doi.org/10.1007/978-3-211-49294-9_18 (Springer Vienna, 2006).

  • 80.

    Price, T. D., Knipper, C., Grupe, G. & Smrcka, V. Strontium Isotopes and Prehistoric Human Migration: The Bell Beaker Period in Central. Europe. Eur. J. Archaeol. 7, 9–40 (2004).

    Google Scholar 

  • 81.

    Vlačiky, M. et al. Gravettian occupation of the Beckov Gate in Western Slovakia as viewed from the interdisciplinary research of the Trenčianske Bohuslavice-Pod Tureckom site. Quat. Int. 294, 41–60 (2013).

    Google Scholar 

  • 82.

    Giblin, J. I., Knudson, K. J., Bereczki, Z., Pálfi, G. & Pap, I. Strontium isotope analysis and human mobility during the Neolithic and Copper Age: A case study from the Great Hungarian Plain. J. Archaeol. Sci. 40, 227–239 (2013).

    CAS  Google Scholar 

  • 83.

    Gerling, C. et al. Immigration and transhumance in the Early Bronze Age Carpathian Basin: the occupants of a kurgan. Antiquity 86, 1097–1111 (2012).

    Google Scholar 

  • 84.

    Szczepanek, A. et al. Understanding Final Neolithic communities in south-eastern Poland: New insights on diet and mobility from isotopic data. Plos One 13, 1–22 (2018).

  • 85.

    Alt, K. W. et al. Lombards on the Move – An Integrative Study of the Migration Period Cemetery at Szólád, Hungary. Plos One 9, e110793 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Abelova, M. Migration pattern inferred from Ursus spelaeus Rosenmüller tooth from Tmavá skala cave (Slovak Republic) using strontium isotope analyses. Proc. 12th Int. Cave Bear Symp. 2-5 Novemb. 2006, Thessaloniki Arid. (Pella, Maced. 98, 123–126 (2006).

    Google Scholar 

  • 87.

    Giblin, J. I. Strontium isotope analysis of Neolithic and Copper Age populations on the Great Hungarian Plain. J. Archaeol. Sci. 36, 491–497 (2009).

    Google Scholar 

  • 88.

    Stefaniak, K. et al. Middle and Late Pleistocene elks (Cervalces Scott, 1855 and Alces Gray, 1821) from Poland: palaeoenvironmental and palaeogeographic implications. Ann. Soc. Geol. Pol. 84, 341–362 (2014).

    Google Scholar 

  • 89.

    Willis, K. J. & Van Andel, T. H. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).

    ADS  Google Scholar 

  • 90.

    Nadachowski, A. & Sommer, R. S. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).

    Google Scholar 

  • 91.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  Google Scholar 

  • 92.

    Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 93.

    Dean, M. C. A Histological Method That Can Be Used to Estimate the Time Taken to Form the Crown of a Permanent Tooth. In 89–100, https://doi.org/10.1007/978-1-61779-977-8_5 (2012).

  • 94.

    Trayler, R. B. & Kohn, M. J. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods. Geochim. Cosmochim. Acta 198, 32–47 (2017).

    ADS  CAS  Google Scholar 

  • 95.

    Jochum, K. P. et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanalytical Res. 35, 397–429 (2011).

    CAS  Google Scholar 

  • 96.

    Woodhead, J., Swearer, S., Hergt, J. & Maas, R. In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: Interference corrections, high spatial resolution and an example from otolith studies. J. Anal. At. Spectrom. 20, 22–27 (2005).

    CAS  Google Scholar 

  • 97.

    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508 (2011).

    CAS  Google Scholar 

  • 98.

    Hellstrom, J., Paton, C., Woodhead, J. & Hergt, J. Iolite: software for spatially resolved LA-(quad and MC) ICPMS analysis. Mineral. Assoc. Canada Short Course Ser. 343–348 (2008).

  • 99.

    McArthur, J. M. Strontium Isotope Stratigraphy. in Application of Modern Stratigraphic Techniques 129–142 (SEPM, https://doi.org/10.2110/sepmsp.094.129 (Society for Sedimentary Geology), 2010).

  • 100.

    Lee-Thorp, J. A., van der Merwe, N. J. & Brain, C. K. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. J. Hum. Evol. 18, 183–189 (1989).

    Google Scholar 

  • 101.

    Müller, W., Fricke, H., Halliday, A. N., McCulloch, M. T. & Warthro, J.-A. Origin and Migration of the Alpine Iceman. Science (80-). 302, 862–866 (2003).

  • 102.

    Kováč, M. et al. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet. Change 155, 133–154 (2017).

    ADS  Google Scholar 

  • 103.

    Schito, A. et al. Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland). Mar. Pet. Geol. 80, 112–132 (2017).

    CAS  Google Scholar 

  • 104.

    Ulrych, J. et al. Chemistry and Sr-Nd isotope signature of amphiboles of the magnesio-hastingsite–pargasite–kaersutite series in Cenozoic volcanic rocks: Insight into lithospheric mantle beneath the Bohemian Massif. Lithos 312–313, 308–321 (2018).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    IdeaStream 2020 goes virtual

    Correlation analysis of land surface temperature and topographic elements in Hangzhou, China