in

Tracking of marine predators to protect Southern Ocean ecosystems

  • 1.

    Stark, J. S., Raymond, T., Deppeler, S. L. & Morrison, A. K. Antarctic Seas. World Seas: an Environmental Evaluation (Elsevier, 2019).

  • 2.

    Chown, S. L. & Brooks, C. M. The state and future of Antarctic environments in a global context. Annu. Rev. Environ. Resour. 44, 1–30 (2019).

    • Article
    • Google Scholar
  • 3.

    Ainley, D. G. & Blight, L. K. Ecological repercussions of historical fish extraction from the Southern Ocean. Fish Fish. 10, 13–38 (2009).

    • Article
    • Google Scholar
  • 4.

    Agnew, D. J., Hill, S. L., Beddington, J. R., Purchase, L. V. & Wakeford, R. C. Sustainability and management of southwest Atlantic squid fisheries. Bull. Mar. Sci. 76, 579–594 (2005).

    • Google Scholar
  • 5.

    Kock, K. H., Reid, K., Croxall, J. & Nicol, S. Fisheries in the Southern Ocean: an ecosystem approach. Phil. Trans. R. Soc. B. 362, 2333–2349 (2007).

  • 6.

    Nicol, S., Foster, J. & Kawaguchi, S. The fishery for Antarctic krill—recent developments. Fish Fish. 13, 30–40 (2012).

    • Article
    • Google Scholar
  • 7.

    Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

  • 8.

    Convention on Biological Diversity. Decisions Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Ninth Meeting. Report No. UNEP/CBD/COP/9/29 (CBD, 2008).

  • 9.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

  • 10.

    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).

    • Article
    • Google Scholar
  • 11.

    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables”—eEOVs) for observing dynamics and change in Southern Ocean ecosystems. J. Mar. Syst. 161, 26–41 (2016).

    • Article
    • Google Scholar
  • 12.

    Reid, K., Croxall, J. P., Briggs, D. R. & Murphy, E. J. Antarctic ecosystem monitoring: quantifying the response of ecosystem indicators to variability in Antarctic krill. ICES J. Mar. Sci. 62, 366–373 (2005).

    • Article
    • Google Scholar
  • 13.

    Cury, P. M. et al. Global seabird response to forage fish depletion—one-third for the birds. Science 334, 1703–1706 (2011).

  • 14.

    Nicol, S. et al. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406, 504–507 (2000).

  • 15.

    Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).

  • 16.

    Ropert-Coudert, Y. et al. The Retrospective Analysis of Antarctic Tracking Data project. Sci. Data https://doi.org/10.1038/s41597-020-0406-x (2020).

  • 17.

    Hindell, M. A. et al. in The Kerguelen Plateau: Marine Ecosystem and Fisheries (eds Duhamel, G. & Welsford, D.) 203–215 (Societe Francaise d’Ichtyologie, 2011).

  • 18.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  • 19.

    Hindell, M. A. et al. Decadal changes in habitat characteristics influence population trajectories of southern elephant seals. Glob. Chang. Biol. 23, 5136–5150 (2017).

  • 20.

    Sallée, J.-B., Speer, K. G. & Rintoul, S. R. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).

  • 21.

    Davies, R. G., Irlich, U. M., Chown, S. L. & Gaston, K. J. Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Glob. Ecol. Biogeogr. 19, 98–110 (2010).

    • Article
    • Google Scholar
  • 22.

    Ardyna, M. et al. Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophys. Res. Lett. 44, 5016–5024 (2017).

  • 23.

    Ropert-Coudert, Y. et al. in Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 364–387 (Scientific Committee on Antarctic Research, 2014).

  • 24.

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

  • 25.

    Nicol, S. & Raymond, B. in Antarctic Ecosystems: an Extreme Environment in a Changing World (eds Rogers, A. D. et al.) 243–254 (Wiley, 2012).

  • 26.

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Chang. Biol. 20, 3004–3025 (2014).

  • 27.

    Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Phil. Trans. R. Soc. A 372, 20130296 (2014).

  • 28.

    Dayton, P. K., Thrush, S. F., Agardy, M. T. & Hofman, R. J. Environmental effects of marine fishing. Aquat. Conserv. 5, 205–232 (1995).

    • Article
    • Google Scholar
  • 29.

    Kroodsma, D. A. et al. Tracking the global footprint of fisheries. Science 359, 904–908 (2018).

  • 30.

    Mormede, S., Dunn, A., Parker, S. & Hanchet, S. Using spatial population models to investigate the potential effects of the Ross Sea region Marine Protected Area on the Antarctic toothfish population. Fish. Res. 190, 164–174 (2017).

    • Article
    • Google Scholar
  • 31.

    Massom, R. A. & Stammerjohn, S. E. Antarctic sea ice change and variability—physical and ecological implications. Polar Sci. 4, 149–186 (2010).

  • 32.

    Vaughan, D. et al. in Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 317–382 (Cambridge University Press, 2013).

  • 33.

    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

  • 34.

    Harrison, A.-L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).

  • 35.

    Hilborn, R. Policy: marine biodiversity needs more than protection. Nature 535, 224–226 (2016).

  • 36.

    Phillips, R. A. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).

    • Article
    • Google Scholar
  • 37.

    Constable, A. J., De LaMare, W. K., Agnew, D. J., Everson, I. & Miller, D. Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J. Mar. Sci. 57, 778–791 (2000).

    • Article
    • Google Scholar
  • 38.

    Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).

    • Article
    • Google Scholar
  • 39.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

  • 40.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

  • 41.

    Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nat. Clim. Chang. 3, 4–6 (2013).

  • 42.

    Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. R. Soc. Lond. B 279, 2515–2523 (2012).

    • Article
    • Google Scholar
  • 43.

    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).

  • 44.

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

  • 45.

    Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211–214 (2012).

  • 46.

    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Chang. 8, 245–251 (2018).

  • 47.

    Southwell, C. et al. Recent studies overestimate colonization and extinction events for Adelie penguin breeding colonies. Auk 134, 39–50 (2017).

    • Article
    • Google Scholar
  • 48.

    Jacquet, J., Blood-Patterson, E., Brooks, C. & Ainley, D. ‘ Rational use ’ in Antarctic waters. Mar. Policy 63, 28–34 (2016).

    • Article
    • Google Scholar
  • 49.

    Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013 (2018).

  • 50.

    Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).

  • 51.

    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).

  • 52.

    Raymond, B. et al. Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography 38, 121–129 (2015).

    • Article
    • Google Scholar
  • 53.

    Reisinger, R. R. et al. Habitat modelling of tracking data from multiple marine predators identifies important areas in the Southern Indian Ocean. Divers. Distrib. 24, 535–550 (2018).

    • Article
    • Google Scholar
  • 54.

    R Core Team. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).

  • 55.

    Jonsen, I. D. et al. Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566 (2019).

  • 56.

    Aarts, G., MacKenzie, M., McConnell, B., Fedak, M. & Matthiopoulos, J. Estimating space-use and habitat preference from wildlife telemetry data. Ecography 31, 140–160 (2008).

    • Article
    • Google Scholar
  • 57.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

  • 58.

    Pya, N. & Wood, S. N. Shape constrained additive models. Stat. Comput. 25, 543–559 (2015).

  • 59.

    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

  • 60.

    Rintoul, S. R. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

  • 61.

    World Meteorological Organization. Guide to Climatological Practices (WMO No. 100) (World Meteorological Organization, 2011).

  • 62.

    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).

  • 63.

    He, J. et al. Impact of ocean eddy resolution on the sensitivity of precipitation to CO2 increase. Geophys. Res. Lett. 45, 7194–7203 (2018).

  • 64.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

  • 65.

    Cavanagh, R. D. et al. A synergistic approach for evaluating climate model output for ecological applications. Front. Mar. Sci. 4, 308 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste