in

Trait convergence and trait divergence in lake phytoplankton reflect community assembly rules

  • 1.

    Götzenberger, L. et al. Ecological assembly rules in plant communities—Approaches, patterns and prospects. Biol. Rev. 87, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x (2012).

    Article  PubMed  Google Scholar 

  • 2.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. P. Natl. Axad. Sci. USA 104, 20684–20689. https://doi.org/10.1073/pnas.0704716104 (2007).

    ADS  Article  Google Scholar 

  • 3.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).

    Article  PubMed  Google Scholar 

  • 4.

    Nobel, I.R. & Slatyer, R.O. Post-fire succession of plants in Mediterranean ecosystems in: Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems (eds. Mooney, H.A. & Conrad, C.E.) 27–36 (California Palo Alto, 1977).

  • 5.

    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126. https://doi.org/10.1890/07-1134.1 (2009).

    Article  Google Scholar 

  • 6.

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an amazonian forest. Science 322, 580–582. https://doi.org/10.1126/science.1160662 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    MacArthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385. https://doi.org/10.1086/282505 (1967).

    Article  Google Scholar 

  • 8.

    Pásztor, L., Botta-Dukát, Z., Magyar, G., Czárán, T. & Meszéna, G. Theory-Based Ecology: A Darwinian Approach (Oxford University Press, Oxford, 2016).

    Google Scholar 

  • 9.

    Diamond, J.M. Assembly of Species Communities in Ecology and Evolution of Communities (eds. Cody, M.L. & Diamond, J.M.) 342–444 (Belknap Press, 1975).

  • 10.

    Litchman, E., Klausmeier, C. A., Schofield, O. M. & Falkowski, P. G. The role of functional traits and trade-offs in structuring phytoplankton communities: Scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x (2007).

    Article  PubMed  Google Scholar 

  • 11.

    Reynolds, C. S., Huszár, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428. https://doi.org/10.1093/plankt/24.5.417 (2002).

    Article  Google Scholar 

  • 12.

    Salmaso, N. & Padisák, J. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578, 97–112. https://doi.org/10.1007/s10750-006-0437-0 (2007).

    Article  Google Scholar 

  • 13.

    Salmaso, N., Naselli-Flores, L. & Padisák, J. Functional classifications and their application in phytoplankton ecology. Freshw. Biol. 60, 603–619. https://doi.org/10.1111/fwb.12520 (2015).

    Article  Google Scholar 

  • 14.

    Borics, G., Tóthmérész, B., Lukács, B. A. & Várbíró, G. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698, 251–262. https://doi.org/10.1007/s10750-012-1129-6 (2012).

    Article  Google Scholar 

  • 15.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206. https://doi.org/10.1086/652373 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Padisák, J., Vasas, G. & Borics, G. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 764, 3–27. https://doi.org/10.1007/s10750-015-2259-4 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Padisák, J. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. 107, 563–593 (1997).

    Google Scholar 

  • 18.

    Méndez, V., Assaf, M., Masó-Puigdellosas, A., Campos, D. & Horsthemke, W. Demographic stochasticity and extinction in populations with Allee effect. Phys. Rev. E. 99, 022101. https://doi.org/10.1103/PhysRevE.99.022101 (2019).

    ADS  Article  Google Scholar 

  • 19.

    Parvinen, K., Dieckmann, U., Gyllenberg, M. & Metz, J. A. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evolut. Biol. 16, 143–153. https://doi.org/10.1046/j.1420-9101.2003.00478.x (2003).

    CAS  Article  Google Scholar 

  • 20.

    Borics, G., Abonyi, A., Salmaso, N. & Ptacnik, R. Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia https://doi.org/10.1007/s10750-020-04332-9 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 21.

    Naselli-Flores, L., Padisák, J., Dokulil, M. T. & Chorus, I. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502, 395–403. https://doi.org/10.1023/B:HYDR.0000004297.52645.59 (2003).

    Article  Google Scholar 

  • 22.

    Weiher, E. & Keddy, P.A. Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos 74, 159–164 (1995). https://www.jstor.org/stable/3545686.

  • 23.

    Coyle, J. R. et al. Using trait and phylogenetic diversity to evaluate the generality of the stress-dominance hypothesis in eastern North American tree communities. Ecography 37, 814–826. https://doi.org/10.1111/ecog.00473 (2014).

    Article  Google Scholar 

  • 24.

    Baastrup-Spohr, L., Sand-Jensen, K., Nicolajsen, S. V. & Bruun, H. H. From soaking wet to bone dry: Predicting plant community composition along a steep hydrological gradient. J. Veg. Sci. 26, 619–630. https://doi.org/10.1111/jvs.12280 (2015).

    Article  Google Scholar 

  • 25.

    Lhotsky, B. et al. Changes in assembly rules along a stress gradient from open dry grasslands to wetlands. J. Ecol. 104, 507–517. https://doi.org/10.1111/1365-2745.12532 (2016).

    Article  Google Scholar 

  • 26.

    Butterfield, B. J., Bradford, J. B., Munson, S. M. & Gremer, J. R. Aridity increases below-ground niche breadth in grass communities. Plant Ecol. 218, 385–394. https://doi.org/10.1007/s11258-016-0696-4 (2017).

    Article  Google Scholar 

  • 27.

    Gastauer, M., Saporetti-Junior, A. W., Valladares, F. & Meira-Neto, J. A. Phylogenetic community structure reveals differences in plant community assembly of an oligotrophic white-sand ecosystem from the Brazilian Atlantic Forest. Acta Bot. Bras. 31, 531–538. https://doi.org/10.1590/0102-33062016abb0442 (2017).

    Article  Google Scholar 

  • 28.

    Chapman, J. & McEwan, R. The role of environmental filtering in structuring appalachian tree communities: Topographic influences on functional diversity are mediated through soil characteristics. Forests 9, 19. https://doi.org/10.3390/f9010019 (2018).

    Article  Google Scholar 

  • 29.

    Lukács, B. A. et al. Carbon forms, nutrients and water velocity filter hydrophyte and riverbank species differently: A trait-based study. J. Veg. Sci. 30, 471–484 (2019).

    Article  Google Scholar 

  • 30.

    Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Glob. Chang. Biol. 24, 4417–4427. https://doi.org/10.1111/gcb.14320 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 31.

    Patrick, L. E. & Stevens, R. D. Phylogenetic community structure of North American desert bats: Influence of environment at multiple spatial and taxonomic scales. J. Anim. Ecol. 85, 1118–1130. https://doi.org/10.1111/1365-2656.12529 (2016).

    Article  PubMed  Google Scholar 

  • 32.

    Lopez, B. et al. A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosyst. 1, e9501. https://doi.org/10.3897/oneeco.1.e9501 (2016).

    Article  Google Scholar 

  • 33.

    Ács, E. et al. Trait-based community assembly of epiphytic diatoms in saline astatic ponds: a test of the stress-dominance hypothesis. Sci. Rep. 9(1), 15749 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Downing, J. A. & McCauley, E. The nitrogen:phosphorus relationship in lakes. Limnol. Oceanogr. 37, 936–945 (1992).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Phillips, G. et al. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704, 75–95. https://doi.org/10.1007/s10750-012-1390-8 (2013).

    Article  Google Scholar 

  • 36.

    Padisák, J. et al. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502, 157–168. https://doi.org/10.1023/B:HYDR.0000004278.10887.40 (2003).

    Article  Google Scholar 

  • 37.

    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248. https://doi.org/10.1146/annurev-ecolsys-110411-160411 (2012).

    Article  Google Scholar 

  • 38.

    Huisman, J., van Oostveen. P. & Weissing, F.J. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154, 46–68, https://doi.org/10.1086/303220 (1999).

  • 39.

    Bird, D. F. & Kalff, J. Bacterial grazing by planktonic lake algae. Science 231, 493–495. https://doi.org/10.1126/science.231.4737.493 (1986).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Stoecker, D. K. Mixotrophy among Dinoflagellates. J. Eukaryot. Microbiol. 46, 397–401. https://doi.org/10.1111/j.1550-7408.1999.tb04619.x (1999).

    Article  Google Scholar 

  • 41.

    Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. (John Wiley and Sons, 2001). ISBN 0-471-49601-4.

  • 42.

    Navas, M. & Violle, C. Plant traits related to competition: How do they shape the functional diversity of communities?. Commun. Ecol. 10, 131–137. https://doi.org/10.1556/ComEc.10.2009.1.15 (2009).

    Article  Google Scholar 

  • 43.

    Reynolds, C. S. The Ecology of Phytoplankton (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  • 44.

    Borics, G., Grigorszky, I., Szabó, S. & Padisák, J. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424, 79–90. https://doi.org/10.1023/A:1003948827254 (2000).

    Article  Google Scholar 

  • 45.

    Mason, N. W. H., de Bello, F., Doležal, J. & Lepš, J. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. J. Ecol. 99, 788–796. https://doi.org/10.1111/j.1365-2745.2011.01801.x (2011).

    Article  Google Scholar 

  • 46.

    Dobosi, Z. & Felméry, L. Climatology, ELTE TTK, Nemzeti Tankönyvkiadó, p. 500 (in Hungarian).

  • 47.

    Mihevc, A., Prelovšek, M. & Hajna, N.Z. Introduction to the Dinaric Karst. Inštitut za raziskovanje krasa ZRC SAZU. (2010).

  • 48.

    Borics, G. et al. Phytoplankton-based shallow lake types in the Carpathian basin: Steps towards a bottom-up typology. Fund. Appl. Limnol. 184, 23–34. https://doi.org/10.1127/1863-9135/2014/0518 (2014).

    Article  Google Scholar 

  • 49.

    Borics, G., Abonyi, A., Várbíró, G., Padisák, J. &T-Krasznai, E. Lake stratification in the Carpathian basin and its interesting biological consequences. Inland Waters 5, 173–186, https://doi.org/10.5268/IW-5.2.702 (2015).

  • 50.

    Utermöhl, H. Zur Vervollkommnung der quantitative Phytolankton-Methodik. Mitt. Int. Verein. Limnol. 9, 1–38. https://doi.org/10.1080/05384680.1958.11904091 (1958).

    Article  Google Scholar 

  • 51.

    Török, P. et al. Functional diversity supports the biomass–Diversity humped-back relationship in phytoplankton assemblages. Funct. Ecol. 30, 1593–1602. https://doi.org/10.1111/1365-2435.12631 (2016).

    Article  Google Scholar 

  • 52.

    Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x (1999).

    Article  Google Scholar 

  • 53.

    MSZ ISO 10260:1993. Water Quality. Measurement of Biochemical Parameters. Spectrometric Determination of the Chlorophyll-a Concentration.

  • 54.

    MSZ EN ISO 6878:2004. Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method.

  • 55.

    ISO 11905-1:1997. Water Quality. Determination of Nitrogen. Part 1: Method Using Oxidative Digestion with Peroxodisulfate.

  • 56.

    MSZ ISO 6060:1991.Water Quality. Determination of the Chemical Oxygen Demand.

  • 57.

    Botta-Dukát, Z. Cautionary note on calculating standardized effect size (SES) in randomization test. Commun. Ecol. 19, 77–83, https://doi.org/10.1556/168.2018.19.1.8 (2018).

  • 58.

    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x (2005).

    Article  Google Scholar 

  • 59.

    Legendre, P. & Legendre, L.F. Numerical Ecology Vol. 24. (Elsevier, 2012).

  • 60.

    Götzenberger, L. et al. Which randomizations detect convergence and divergence in trait‐based community assembly? A test of commonly used null models. J. Veg. Sci. 27, https://doi.org/10.1111/jvs.12452, 1275–1287.

  • 61.

    Botta-Dukát, Z. & Czúcz, B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods Ecol. Evol. 7, 114–126. https://doi.org/10.1111/2041-210X.12450 (2016).

    Article  Google Scholar 

  • 62.

    Garnier E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, e2630–2637, https://doi.org/10.1890/03-0799.

  • 63.

    Dray, S. & Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20, https://doi.org/10.18637/jss.v022.i04.

  • 64.

    Oksanen J. et al. Package ‘vegan’. Community Ecology Package, Version, 2(9) (2013).

  • 65.

    Team R. Core (2017) R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale

    Power-free system harnesses evaporation to keep items cool