in

Using mathematical modelling to investigate the adaptive divergence of whitefish in Fennoscandia

  • 1.

    Geritz, S. A. H. & Kisdi, É. Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation. Proceedings of the Royal Society Biological Sciences Series B 267, 1671–1678 (2000).

  • 2.

    Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: Models and experiments. American Naturalist 159, S22–S35 (2002).

  • 3.

    Servedio, M. R. & Noor, M. A. F. The role of reinforcement in speciation: Theory and data. Annual Review of Ecology, Evolution, and Systematics 34, 339–364 (2003).

    • Article
    • Google Scholar
  • 4.

    Dieckmann, U., Doebeli, M., Metz, J. A. J. & Tautz, D. Adaptive speciation. (Cambridge University Press, Cambridge, UK, 2004).

    • Google Scholar
  • 5.

    Doebeli, M. Adaptive Diversification (MPB-48) (Princeton University Press, Princeton, New Jersey, 2011).

  • 6.

    Gavrilets, S. Perspective: Models of speciation: What have we learned in 40 years? Evolution 57, 2197–2215 (2003).

  • 7.

    Gavrilets, S. Fitness landscapes and the origin of species. (Princeton University Press, Princeton, New Jersey, USA, 2004).

    • Google Scholar
  • 8.

    van Doorn, G. S., Edelaar, P. & Weissing, F. J. On the origin of species by natural and sexual selection. Science 326, 1704–1707 (2009).

  • 9.

    Gavrilets, S. Models of speciation: Where are we now? Journal of Heredity 105, 743–755 (2014).

  • 10.

    Lande, R., Seehausen, O. & van Alphen, J. J. M. Mechanisms of rapid sympatric speciation by sex reversal and sexual selection in cichlid fish. Genetica 112–113, 435–443 (2001).

  • 11.

    Gavrilets, S., Vose, A., Barluenga, M., Salzburger, W. & Meyer, A. Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Molecular Ecology 16, 2893–2909 (2007).

  • 12.

    Kawata, M., Shoji, A., Kawamura, S. & Seehausen, O. A genetically explicit model of speciation by sensory drive within a continuous population in aquatic environments. BMC Evolutionary Biology 7, 99 (2007).

  • 13.

    Aguilee, R., Lambert, A. & Claessen, D. Ecological speciation in dynamic landscapes. Journal of Evolutionary Biology 24, 2663–2677 (2011).

  • 14.

    Gavrilets, S. & Vose, A. Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Molecular Ecology 16, 2910–2921 (2007).

  • 15.

    Duenez-Guzman, E. A., Mavárez, J., Vose, M. D. & Gavrilets, S. Case studies and mathematical models of ecological speciation. 4. Hybrid speciation in butterflies in a jungle. Evolution 63, 2611–2626 (2009).

  • 16.

    Sadedin, S., Hollander, J., Panova, M., Johannesson, K. & Gavrilets, S. Case studies and mathematical models of ecological speciation. 3: Ecotype formation in a swedish snail. Molecular Ecology 18, 4006–4023 (2009).

  • 17.

    Yamamichi, M. & Sasaki, A. Single-gene speciation with pleiotropy: effects of allele dominance, population size and delayed inheritance. Evolution 67, 2011–2023 (2013).

  • 18.

    Roesti, M., Gavrilets, S., Hendry, A. P., Salzburger, W. & Berner, D. The genomic signature of parallel adaptation from shared genetic variation. Molecular Ecology 23, 3944–3956 (2014).

  • 19.

    Mangerud, J. et al. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews 23, 1313–1332 (2004).

  • 20.

    Sollid, J. L. et al. Deglaciation of Finnmark, North Norway. Norsk Geografisk Tidsskrift – Norwegian Journal of Geography 27, 233–325 (1973).

    • Article
    • Google Scholar
  • 21.

    Kujansuu, R., Eriksson, B. & Grönlund, T. Lake Inarijärvi, northern Finland: sedimentation and late Quaternary evolution. Report of Investigation 143 (Geological Survey of Finland, 25 p., 1998).

  • 22.

    Østbye, K. et al. Parallel evolution of ecomorphological traits in the European whitefish coregonus lavaretus (L.) species complex during postglacial times. Molecular Ecology 15, 3983–4001 (2006).

  • 23.

    Harrod, C., Mallela, J. & Kahilainen, K. K. Phenotype-environment correlations in a putative whitefish adaptive radiation. Journal of Animal Ecology 79, 1057–1068 (2010).

  • 24.

    Siwertsson, A. et al. Sympatric diversification as influenced by ecological opportunity and historical contingency in a young species lineage of whitefish. Evolutionary Ecology Research 12, 929–947 (2010).

    • Google Scholar
  • 25.

    Kahilainen, K. & Østbye, K. Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. Journal of Fish Biology 68, 63–79 (2006).

  • 26.

    Præbel, K. et al. Ecological speciation in postglacial European whitefish: rapid adaptive radiations into the littoral, pelagic, and profundal lake habitats. Ecology and evolution 3, 4970–4986 (2013).

  • 27.

    Häkli, K., Østbye, K., Kahilainen, K. K., Amundsen, P.-A. & Præbel, K. Diversifying selection drives parallel evolution of adaptive trait utility to the main lake habitats along the speciation continuum in European whitefish. Ecology and Evolution 8, 2617–2631 (2018).

  • 28.

    Kahilainen, K. & Lehtonen, H. Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. Journal of Fish Biology 63, 659–672 (2003).

    • Article
    • Google Scholar
  • 29.

    Amundsen, P.-A., Knudsen, R., Klemetsen, A. & Kristoffersen, R. Resource competition and interactive segregation between sympatric whitefish morphs. Annales Zoologi Fennici 41, 301–307 (2004).

  • 30.

    Amundsen, P.-A. et al. Ontogenetic niche shifts and resource partitioning in a subarctic piscivore fish guild. Hydrobiologia 497, 109–119 (2003).

    • Article
    • Google Scholar
  • 31.

    Jensen, H. et al. Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Canadian Journal of Fisheries and Aquatic Sciences 65, 1831–1841 (2008).

    • Article
    • Google Scholar
  • 32.

    Hayden, B., Harrod, C. & Kahilainen, K. K. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. Journal of Animal Ecology 83, 1501–1512 (2014).

  • 33.

    Gagnaire, P.-A., Normandeau, E., Pavey, S. A. & Bernatchez, L. Mapping phenotypic, expression and transmission ratio distortion qtl using rad markers in the lake whitefish (Coregonus clupeaformis). Molecular Ecology 22, 3036–3048 (2015).

  • 34.

    Rogers, A.-M. D.-C. et al. Rad-qtl mapping reveals both genome-level parallelism and different genetic architecture underlying the evolution of body shape in lake whitefish (Coregonus clupeaformis) species pairs. G3: Genes, Genomes, Genetics 5, 1481–1491 (2015).

  • 35.

    Jacobs, A., Womack, R., Chen, M., Gharbi, K. & Elmer, K. R. Significant synteny and colocalization of ecologically relevant quantitative trait loci within and across species of salmonid fishes. Genetics 207, 741–754 (2017).

  • 36.

    Kot, M. Elements of Mathematical Ecology. (Cambridge University Press, Cambridge, 2001).

    • Google Scholar
  • 37.

    Kahilainen, K., Lehtonen, H. & Könönen, K. Consequence of habitat segregation to growth rate of two sparsely rakered whitefish (Coregonus lavaretus (L.)) forms in a subarctic lake. Ecology of Freshwater Fish 12, 275–285 (2003).

    • Article
    • Google Scholar
  • 38.

    Kahilainen, K., Alajärvi, E. & Lehtonen, H. Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus (L.)) in a subarctic lake. Ecology of Freshwater Fish 14, 50–58 (2005).

    • Article
    • Google Scholar
  • 39.

    Armsworth, P. R. & Roughgarden, J. E. The structure of clines with fitness-dependent dispersal. American Naturalist 172, 648–657 (2008).

  • 40.

    Armsworth, P. R. Conditional dispersal, clines, and the evolution of dispersiveness. Theoretical Ecology 2, 105–117 (2009).

    • Article
    • Google Scholar
  • 41.

    Rowell, J. T. The limitation of species range: A consequence of searching along resource gradients. Theoretical Population Biology 75, 216–227 (2009).

  • 42.

    Cantrell, R. S., Cosner, C., Lou, Y. & Xie, C. Random dispersal versus fitness-dependent dispersal. Journal of Differential Equations 254, 2905–2941 (2013).

  • 43.

    Schneider, J. P., Laarman, P. W. & Gowing, H. Length-weight relationships. Chapter 17. In Manual of fisheries survey methods II: with periodic updates. Fisheries Special Report 25 (Michigan Department of Natural Resources, Ann Arbor, 2000).

  • 44.

    Sandlund, O. T., Gjelland, K. Ø., Bøhn, T., Knudsen, R. & Amundsen, P.-A. Contrasting population and life history responses of a young morph-pair of european whitefish to the invasion of a specialised coregonid competitor, vendace. PloS One 8, e68156 (2013).

  • 45.

    Kahilainen, K., Malinen, T., Tuomaala, A. & Lehtonen, H. Diel and seasonal habitat and food segregation of three sympatric Coregonus lavaretus forms in a subarctic lake. Journal of Fish Biology 64, 418–434 (2004).

    • Article
    • Google Scholar
  • 46.

    Malinen, T., Tuomaala, A., Lehtonen, H. & Kahilainen, K. K. Hydroacoustic assessment of mono-and polymorphic coregonus density and biomass in subarctic lakes. Ecology of Freshwater Fish 23, 424–437 (2014).

  • 47.

    Häkli, K. The speciation landscape of European whitefish in northern fennoscandia – the importance of deglaciation history, standing genetic variation and natural selection. PhD thesis UiT The Arctic University of Norway (2019).

  • 48.

    Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proceedings of the National Academy of Sciences of the United States of America 102, 18040–18045 (2005).

  • 49.

    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so called magic traits in ecological speciation. Ecology Letters 16, 1004–1013 (2013).

  • 50.

    Hudson, A. G., Vonlanthen, P. & Seehausen, O. Rapid parallel adaptive radiations from a single hybridogenic ancestral populations. Proceedings of the Royal Society London B 278, 58–66 (2011).

    • Article
    • Google Scholar
  • 51.

    Bhat, S. et al. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion. PLoS One 9, e91208 (2014).

  • 52.

    Siwertsson, A. et al. Discrete foraging niches promote ecological, phenotypic, and genetic divergence in sympatric whitefish (Coregonus lavaretus). Evolutionary Ecology 27, 547–564 (2013).

    • Article
    • Google Scholar
  • 53.

    Thomas, S. M., Harrod, C., Hayden, B., Malinen, T. & Kahilainen, K. K. Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator. Scientific Reports 7, 8765 (2017).

  • 54.

    Servedio, M. R., Van Doorn, G. S., Kopp, M., Frame, A. M. & Nosil, P. Magic traits in speciation:‘magic’ but not rare. Trends in Ecology and Evolution 26, 389–397 (2011).

  • 55.

    Head, M. L., Kozak, G. M. & Boughman, J. W. Female mate preferences for male body size and shape promote sexual isolation in threespine sticklebacks. Ecology and Evolution 3, 2183–2196 (2013).

  • 56.

    Rueger, T., Gardiner, N. M. & Jones, G. P. Size matters: male and female mate choice leads to size-assortative pairing in a coral reef cardinalfish. Behavioral Ecology 27, 1585–1591 (2016).

    • Google Scholar
  • 57.

    Svärdson, G. Speciation of Scandinavian Coregonus. Reports of the Instute of Freshwater Research Drottningholm 59, 1–95 (1979).

  • 58.

    Taylor, R. S. & Friesen, V. L. The role of allochrony in speciation. Molecular Ecology 26, 3330–3342 (2017).

  • 59.

    Wanzenböck, J., Pamminger-Lahnsteiner, B., Winkler, K. & Weiss, S. J. Experimental evaluation of the spawning periods of whitefish (Coregonus lavaretus complex) in Lake Mondsee, Austria. Advances in Limnology 63, 89–97 (2012).

    • Google Scholar
  • 60.

    Kahilainen, K. K., Patterson, W. P., Sonninen, E., Harrod, C. & Kiljunen, M. Adaptive radiation along a thermal gradient: Preliminary results of habitat use and respiration rate divergence among whitefish morphs. PLoS One 9, e112085 (2014).

  • 61.

    Bitz-Thorsen, J., Häkli, K., Bhat, S. & Præbel, K. Allochrony as a main driver for reproductive isolation in adaptive radiations of European whitefish ecomorphs. Ecology of Freshwater Fish 29, 40–49 (2020).

  • 62.

    Skúlason, S., Snorrason, S. S. & Jónsson, B. Sympatric morphs, populations and speciation in freshwater fish with emphasis on Arctic charr. In Magurran, A. & May, R. (eds) Evolution of Biological Diversity, pp. 70–92 (Oxford University Press, Oxford, 1999).

  • 63.

    Hendry, A. P., Wenburg, J. K., Bentzen, E. C., Volk, P. & Quinn, T. P. Rapid evolution of reproductive isolation in the wild: Evidence from introduced salmon. Science 290, 516–518 (2000).

  • 64.

    Østbye, K., Næsje, T., Bernatchez, L., Sandlund, O. T. & Hindar, K. Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. Journal of Evolutionary Biology 18, 683–70 (2005).

  • 65.

    Edelaar, P. & Bolnick, D. I. Non-random gene flow: an underappreciated force in evolution and ecology. Trends in Ecology and Evolution 27, 659–665 (2012).

  • 66.

    Berner, D. & Thibert-Plante, X. How mechanisms of habitat preference evolve and promote divergence with gene flow. Journal of Evolutionary Biology 28, 1641–1655 (2015).

  • 67.

    Cott, P. A., Guzzo, M., Chapelsky, A. J., Milne, S. W. & Blanchfield, P. J. Diel bank migration of burbot (Lota lota). Hydrobiologia 757, 3–20 (2015).

    • Article
    • Google Scholar
  • 68.

    Giraud, T., Gladieux, P. & Gavrilets, S. Linking emergence of fungal plant diseases and ecological speciation. Trends in Ecology and Evolution 25, 387–395 (2010).

  • 69.

    Brodersen, J., Post, D. M. & Seehausen, O. Upward adaptive radiation cascades: predator diversification induced by prey diversification. Trends in Ecology and Evolution 33, 59–71 (2018).

  • 70.

    Kahilainen, K. K. et al. The role of gill raker number variability in adaptive radiation of coregonid fish. Evolutionary Ecology 25, 573–588 (2011).

    • Article
    • Google Scholar
  • 71.

    Vonlanthen, P. et al. Divergence along a steep ecological gradient in lake whitefish (Coregonus sp.). Journal of Evolutionary Biology 22, 498–514 (2009).

  • 72.

    Eshenroder, R. et al. Ciscoes (Coregonus, subgenus Leucichthys) of the Laurentian Great Lakes and Lake Nipigon (2016).

  • 73.

    Gavrilets, S. & Losos, J. B. Adaptive radiation: Contrasting theory with data. Science 323, 732 (2009).

  • 74.

    Muir, A. M., Hansen, M. J., Bronte, C. R. & Krueger, C. C. If Arctic charr salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush? Fish and Fisheries 17, 1194–1207 (2016).

  • 75.

    Radnaeva, L. D. et al. Fatty acids composition in the whitefish muscle of Cottoidei fishes of Lake Baikal reflects their habitat depth. Environmental Biology of Fishes 100, 1623–1641 (2017).

    • Article
    • Google Scholar
  • 76.

    Esin, E. V. & Markvich, G. N. Evolution of the charrs, genus Salvelinus (Salmonidae). 1. origins and expansion of the species. Journal of Ichthyology 58, 187–203 (2018).

  • 77.

    Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evolutionary Applications 7, 968–983 (2014).

  • 78.

    Doenz, C. J., Bittner, D., Vonlanthen, P., Wagner, C. E. & Seehausen, O. Rapid buildup of sympatric species diversity in alpine whitefish. Ecology and Evolution 8, 9398–9412 (2018).


  • Source: Ecology - nature.com

    The intensification of Arctic warming as a result of CO2 physiological forcing

    Accelerating invasion potential of disease vector Aedes aegypti under climate change