in

Weather and agricultural intensification determine the breeding performance of a small generalist predator

  • 1.

    Newton, I. Population Limitation in Birds (Academic Press, London, 1998).

    Google Scholar 

  • 2.

    Rockwood, L. L. Introduction to Population Ecology (Blackwell Publishing, Hoboken, 2015).

    Google Scholar 

  • 3.

    Bell, G. Selection the Mechanism of Evolution (Oxford University Press, Oxford, 2008).

    Google Scholar 

  • 4.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  CAS  Google Scholar 

  • 5.

    Tilman, D. G. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    ADS  Article  CAS  Google Scholar 

  • 6.

    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  Article  CAS  Google Scholar 

  • 7.

    Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).

    Article  Google Scholar 

  • 8.

    Grande, J. M., Orozcovalor, P. M., Liébana, M. S. & Sarasola, J. H. Birds of prey in agricultural landscapes: The role of agriculture expansion and intensification. In Birds of Prey Ecology and Conservation in the XXI Century (eds Sarasola, J. H. et al.) 197–228 (Springer, Berlin, 2018).

    Google Scholar 

  • 9.

    Sergio, F., Newton, I. & Marchesi, L. Conservation: Top predators and biodiversity. Nature 436, 192 (2005).

    ADS  Article  CAS  Google Scholar 

  • 10.

    Butet, A. et al. Responses of common buzzard (Buteo buteo) and Eurasian kestrel (Falco tinnunculus) to land use changes in agricultural landscapes of Western France. Agric. Ecosyst. Environ. 138, 152–159 (2010).

    Article  Google Scholar 

  • 11.

    Amar, A. & Redpath, S. M. Habitat use by Hen Harriers Circus cyaneus on Orkney: Implications of land-use change for this declining population. Ibis. 147, 37–47 (2005).

    Article  Google Scholar 

  • 12.

    Vergara, P. et al. Low frequency of anti-acetylcholinesterase pesticide poisoning in lesser and Eurasian kestrels of Spanish grassland and farmland populations. Biol. Conserv. 141, 499–505 (2008).

    Article  Google Scholar 

  • 13.

    Arroyo, B. E., García, J. T. & Bretagnolle, V. Conservation of the Montagu’s harrier (Circus pygargus) in agricultural areas. Anim. Conserv. 5, 283–290 (2002).

    Article  Google Scholar 

  • 14.

    Goldstein, M. I. et al. Monocrotophos induced mass mortality of Swainson’s Hawks in Argentina, 1995–96. Crop Prot. 8(3), 201–214 (1999).

    CAS  Google Scholar 

  • 15.

    Costantini, D., Dell’Omo, G., La Fata, I. & Casagrande, S. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis. 156, 768–776 (2014).

    Article  Google Scholar 

  • 16.

    Touihri, M., Séguy, M., Imbeau, L., Mazerolle, M. J. & Bird, D. M. Effects of agricultural lands on habitat selection and breeding success of American kestrels in a boreal context. Agric. Ecosyst. Environ. 272, 146–154 (2019).

    Article  Google Scholar 

  • 17.

    Cardador, L., Carrete, M. & Mañosa, S. Can intensive agricultural landscapes favour some raptor species? The Marsh harrier in north-eastern Spain. Anim. Conserv. 14, 382–390 (2011).

    Article  Google Scholar 

  • 18.

    Murgatroyd, M., Avery, G., Underhill, L. G. & Amar, A. Adaptability of a specialist predator: The effects of land use on diet diversification and breeding performance of Verreaux’s eagles. J. Avian Biol. 47, 834–845 (2016).

    Article  Google Scholar 

  • 19.

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).

    Article  CAS  Google Scholar 

  • 20.

    Crick, H. Q. P. The impact of climate change on birds. Ibis. 146, 48–56 (2004).

    Article  Google Scholar 

  • 21.

    Catry, I., Franco, A. M. A. & Sutherland, W. J. Landscape and weather determinants of prey availability: Implications for the Lesser Kestrel Falco naumanni. Ibis. 154, 111–123 (2012).

    Article  Google Scholar 

  • 22.

    Garcia-Heras, M.-S., Arroyo, B. E., Mougeot, F., Amar, A. & Simmons, R. E. Does timing of breeding matter less where the grass is greener? Seasonal declines in breeding performance differ between regions in an endangered endemic raptor. Nat. Conserv. 15, 23–45 (2016).

    Article  Google Scholar 

  • 23.

    García, J. T. & Arroyo, B. E. Effect of abiotic factors on reproduction in the centre and periphery of breeding ranges: A comparative analysis in sympatric harriers. Ecography 24, 393–402 (2001).

    Article  Google Scholar 

  • 24.

    Senapathi, D., Nicoll, M. A. C., Teplitsky, C., Jones, C. G. & Norris, K. Climate change and the risks associated with delayed breeding in a tropical wild bird population. Proc. R. Soc. B Biol. Sci. 278, 3184–3190 (2011).

    Article  Google Scholar 

  • 25.

    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    ADS  Article  CAS  Google Scholar 

  • 26.

    Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87 (2004).

    Article  Google Scholar 

  • 27.

    Newton, I. Population Ecology of Raptors (T & A D Poyser, Berkhamsted, 1979).

    Google Scholar 

  • 28.

    Rodríguez, C. & Bustamante, J. The effect of weather on lesser kestrel breeding success: Can climate change explain historical population declines?. J. Anim. Ecol. 72, 793–810 (2003).

    Article  Google Scholar 

  • 29.

    Steenhof, K., Kochert, M. N. & Mcdonald, T. L. Interactive effects of prey and weather on Golden Eagle reproduction. J. Anim. Ecol. 66, 350 (1997).

    Article  Google Scholar 

  • 30.

    Keane, J. J., Morrison, M. L. & Fry, D. M. Prey and weather factors associated with temporal variation in Northern Goshawk reproduction in the Sierra Nevada. California. Stud. Avian Biol. 31, 85–99 (2006).

    Google Scholar 

  • 31.

    Redpath, S. M. et al. Temperature and hen harrier productivity: From local mechanisms to geographical patterns. Ecography 25, 533–540 (2002).

    Article  Google Scholar 

  • 32.

    Zak, M. R., Cabido, M., Cáceres, D. & Díaz, S. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ. Manag. 42, 181–189 (2008).

    ADS  Article  Google Scholar 

  • 33.

    Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 0–10 (2015).

    Article  Google Scholar 

  • 34.

    Filloy, J. & Bellocq, M. Respuesta de las aves rapaces al uso de la tierra: un enfoque regional. Hornero 22, 131–140 (2007).

    Google Scholar 

  • 35.

    Pedrana, J., Isacch, J. P. & Bó, M. S. Habitat relationships of diurnal raptors at local and landscape scales in southern temperate grasslands of Argentina. Emu 108, 301–310 (2008).

    Article  Google Scholar 

  • 36.

    Filloy, J. & Bellocq, M. I. Patterns of bird abundance along the agricultural gradient of the Pampean region. Agric. Ecosyst. Environ. 120, 291–298 (2007).

    Article  Google Scholar 

  • 37.

    Ferguson-Lees, J. & Christie, D. A. Raptors of The World (Houghton Miffli Harcourt, Boston, 2001).

    Google Scholar 

  • 38.

    McClure, C. J. W., Schulwitz, S. E., Van, R., Pauli, B. P. & Heath, J. A. Commentary: Research recommendations for understanding the decline of American Kestrels (Falco sparverius) across much of North America. J. Raptor Res. 51, 455–464 (2017).

    Article  Google Scholar 

  • 39.

    Smallwood, J. A. et al. Why are American Kestrel (Falco sparverius) populations declining in North America? Evidence from nest-box programs. J. Raptor Res. 43, 274–282 (2009).

    Article  Google Scholar 

  • 40.

    De la Peña, M. R. & Rumboll, M. Birds of Southern South America and Antarctica (Harper Collins Publishers, New York, 1998).

    Google Scholar 

  • 41.

    Carrete, M., Tella, J. L., Blanco, G. & Bertellotti, M. Effects of habitat degradation on the abundance, richness and diversity of raptors across Neotropical biomes. Biol. Conserv. 142, 2002–2011 (2009).

    Article  Google Scholar 

  • 42.

    Schrag, A. M., Zaccagnini, M. E., Calamari, N. & Canavelli, S. Climate and land-use influences on avifauna in central Argentina: Broad-scale patterns and implications of agricultural conversion for biodiversity. Agric. Ecosyst. Environ. 132, 135–142 (2009).

    Article  Google Scholar 

  • 43.

    Goijman, A. P., Conroy, M. J., Bernardos, J. N. & Zaccagnini, M. E. Multi-season regional analysis of multi-species occupancy: Implications for bird conservation in agricultural lands in east-central Argentina. PLoS ONE 10, e0130874 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  • 44.

    Baldi, G. & Paruelo, J. M. Land use and land cover dynamics in South American temperate grasslands. Ecol. Soc. 13, 1–32 (2008).

    Article  Google Scholar 

  • 45.

    Liébana, M. S., Sarasola, J. H. & Bó, M. S. Parental care and behavior of breeding American Kestrels (Falco sparverius) in central Argentina. J. Raptor Res. 43, 338–344 (2009).

    Article  Google Scholar 

  • 46.

    De Lucca, E. R. & Saggesse, M. D. Nidificación del Halconcito Colorado (Falco sparverius) en la Patagonia. Hornero 13, 302–305 (1993).

    Google Scholar 

  • 47.

    Smallwood, J. A. & Bird, D. M. American Kestrel (Falco sparverius). In The Birds of North America 602 (2002).

  • 48.

    Liébana, M. S., Sarasola, J. H. & Santillán, M. Á. Nest-Box occupancy by neotropical raptors in a native forest of central Argentina. J. Raptor Res. 47, 208–213 (2013).

    Article  Google Scholar 

  • 49.

    Lopez, F. G. Oferta de cavidades para vertebrados en relación a parámetros de sustrato de bosques en distinto grado de estado sucesional en el caldenal pampeano (Universidad Nacional de La Pampa, Santa Rosa, 2014).

    Google Scholar 

  • 50.

    De Lucca, E. R. Nidificación del halconcito colorado (Falco sparverius) en nidos de cotorra (Myiopsitta monachus). Hornero 13, 238–240 (1992).

    Google Scholar 

  • 51.

    Orozco Valor, P. M. & Grande, J. M. Exceptionally large clutches in two raptors breeding in nest boxes. J. Raptor Res. 50, 232–236 (2016).

    Article  Google Scholar 

  • 52.

    Korpimäki, E. Breeding performance of Tengmalm’s Owl Aegolius funereus: Effects of supplementary feeding in a peak vole year. Ibis. 131, 51–56 (1989).

    Article  Google Scholar 

  • 53.

    Meijer, T., Daan, S. & Michal, H. Family planning in the kestrel (Falco Tinnunculus): The proximate control of covariation of laying date and clutch size. Behaviour 114, 117–136 (1990).

    Article  Google Scholar 

  • 54.

    Smallwood, J. A. Sexual segregation by habitat in American Kestrels wintering in Southcentral Florida: Vegetative structure and responses to differential prey availability. Condor 89, 842 (1987).

    Article  Google Scholar 

  • 55.

    Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. R. Soc. B Biol. Sci. 276, 2323–2331 (2009).

    Article  Google Scholar 

  • 56.

    Lorda, H. et al. Descripción de zonas y subzonas agroecológicas RIAP. Area de influencia de la EEA Anguil. (2008).

  • 57.

    Smith, S. H., Steenhof, K., McClure, C. J. W. & Heath, J. A. Earlier nesting by generalist predatory bird is associated with human responses to climate change. J. Anim. Ecol. 86, 98–107 (2017).

    Article  Google Scholar 

  • 58.

    Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B Biol. Sci. 363, 399–410 (2008).

    Article  Google Scholar 

  • 59.

    Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).

    Article  Google Scholar 

  • 60.

    Fraschina, J., León, V. A. & Busch, M. Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecol. Res. 27, 191–202 (2012).

    Article  Google Scholar 

  • 61.

    Sumasgutner, P. et al. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front. Zool16, 31 (2019).

  • 62.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).

    Article  Google Scholar 

  • 63.

    Amar, A., Redpath, S. & Thirgood, S. Evidence for food limitation in the declining hen harrier population on the Orkney Islands, Scotland. Biol. Conserv. 111, 377–384 (2003).

    Article  Google Scholar 

  • 64.

    Cardador, L., Planas, E., Varea, A. & Mañosa, S. Feeding behaviour and diet composition of Marsh Harriers Circus aeruginosus in agricultural landscapes. Bird Study 59, 228–235 (2012).

    Article  Google Scholar 

  • 65.

    Rodríguez, C., Tapia, L., Ribeiro, E. & Bustamante, J. Crop vegetation structure is more important than crop type in determining where Lesser Kestrels forage. Bird Conserv. Int. 24, 438–452 (2014).

  • 66.

    Ursúa, E., Serrano, D. & Tella, J. L. Does land irrigation actually reduce foraging habitat for breeding lesser kestrels? The role of crop types. Biol. Conserv. 122, 643–648 (2005).

    Article  Google Scholar 

  • 67.

    Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).

    Article  CAS  Google Scholar 

  • 68.

    Aizen, M. A., Garibaldi, L. A. & Dondo, M. Expansión de la soja y diversidad de la agricultura argentina. Ecol. Austral 19, 45–54 (2009).

    Google Scholar 

  • 69.

    Datos agroindustriales. Datos Agroindustriales. https://datos.agroindustria.gob.ar/ (2017).

  • 70.

    Codesido, M., González-Fischer, C. & Bilenca, D. N. Distributional changes of landbird species in agroecosystems of Central Argentina. Condor 113, 266–273 (2011).

    Article  Google Scholar 

  • 71.

    Dawson, R. D. & Bortolotti, G. R. Experimental evidence for food limitation and sex-specific strategies of American kestrels (Falco sparverius) provisioning offspring. Behav. Ecol. Sociobiol. 52, 43–52 (2002).

    Article  Google Scholar 

  • 72.

    Murgatroyd, M., Underhill, L. G., Rodrigues, L. & Amar, A. The influence of agricultural transformation on the breeding performance of a top predator: Verreaux’s Eagles in contrasting land use areas. Condor 118, 238–252 (2016).

    Article  Google Scholar 

  • 73.

    Dawson, R. D. & Bortolotti, G. R. Reproductive success of American Kestrels: The role of prey abundance and weather. Condor 102, 814–822 (2000).

    Article  Google Scholar 

  • 74.

    Salaberria, C., Celis, P., López-Rull, I. & Gil, D. Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole-nesting passerine. Ibis. 156, 265–275 (2014).

    Article  Google Scholar 

  • 75.

    Catry, I., Franco, A. M. A. & Sutherland, W. J. Adapting conservation efforts to face climate change: Modifying nest-site provisioning for lesser kestrels. Biol. Conserv. 144, 1111–1119 (2011).

    Article  Google Scholar 

  • 76.

    Greño, J. L., Belda, E. J. & Barba, E. Influence of temperatures during the nestling period on post-fledging survival of great tit Parus major in a Mediterranean habitat. J. Avian Biol. 39(1), 41–49 (2008).

    Article  Google Scholar 

  • 77.

    Luck, G. W. Variability in provisioning rates to nestlings in the cooperatively breeding Rufous Treecreeper, Climacteris rufa. Emu 101, 221–224 (2001).

    Article  Google Scholar 

  • 78.

    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).

    Article  Google Scholar 

  • 79.

    Goldstein, M. I. et al. Monocrotophos-induced mass mortality of Swainson’s hawks in Argentina, 1995–96. Ecotoxicology 8, 201–214 (1999).

    Article  CAS  Google Scholar 

  • 80.

    Agroindustria. Estimaciones agrícolas. Miniesterio de Agroindustria https://datosestimaciones.magyp.gob.ar/reportes.php?reporte=Estimaciones (2018).

  • 81.

    SA & DS. Primer inventario nacional de bosques nativos. Informe regional Monte. Secr. Ambient. y Desarro. Sustentable 54 (2007).

  • 82.

    Cabrera, Á. L. Regiones fitogeográficas Argentinas. (Enciclopedia Argentina de Agricultura y Jardinería. Segunda Edición. Tomo II fascículo I. Ed. Acme., 1976).

  • 83.

    Pérez, S. et al. Abrupt changes in rainfall in the Eastern area of La Pampa Province, Argentina. Theor. Appl. Climatol. 103, 159–165 (2011).

    ADS  Article  Google Scholar 

  • 84.

    Casagrande, G. A., Vergara, G. T. & Bellini, Y. Cartas agroclímáticas actuales de temperaturas, heladas y lluvia de la provincia de La Pampa (Argentina). Rev. Fac. Agron. – UNLPam 17, 15–22 (2006).

    Google Scholar 

  • 85.

    Johnsgard, P. A. Hawks, Eagles, & Falcons of North America: Biology and Natural History (Smithsonian Institution Press, Washington, 1990).

    Google Scholar 

  • 86.

    Miller, K. E. & Smallwood, J. A. Natal dispersal and philopatry of Southeastern American Kestrels in Florida. Wilson Bull. 109, 226–232 (1997).

    Google Scholar 

  • 87.

    Steenhof, K. & Heath, J. A. Local recruitment and natal dispersal distances of American kestrels. Condor 115, 584–592 (2013).

    Article  Google Scholar 

  • 88.

    Bird, D. M. & Palmer, R. S. American Kestrel. In Handbook of North American Birds (ed. Palmer, R. S.) 253–290 (Yale Univ. Press, New Haven, 1988).

    Google Scholar 

  • 89.

    Torrado Porto, R. Diversidad y complejidad de los modelos de toma de decisiones y organización productiva en el sector agropecuario del Noreste Pampeano. Aportes para la mejora de la extensión y el desarrollo rural (Universidad Nacional de La Plata, 2019). https://doi.org/10.1037/0033-2909.I26.1.78.

  • 90.

    ESRI. ArcGis Software. (2015).

  • 91.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).

    Article  Google Scholar 

  • 92.

    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).

    Article  Google Scholar 

  • 93.

    Klucsarits, J. R. & Rusbuldt, J. A photographic timeline of Hawk Mountain Sanctuary’s American Kestrel Nestlings (Asst. Ctr., U.SZip Publishing, Columbus, 2007).

    Google Scholar 

  • 94.

    Steenhof, K. & Newton, I. Assessing Nesting Success and Productivity. Raptor Res. Manag. Tech. 181–192 (2007).

  • 95.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 96.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 97.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  • 98.

    Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. arXiv preprint, arXiv:1506.04967 (2015).

  • 99.

    Naimi, B., Hamm, N., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling. Ecography 37, 191–203 (2014).

    Article  Google Scholar 

  • 100.

    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression (Wiley, New York, 2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Power-free system harnesses evaporation to keep items cool

    Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed