in

Enhanced solar evaporation using a photo-thermal umbrella for wastewater management

  • 1.

    The Global Risks Report 2018 (World Economic Forum, 2018).

  • 2.

    Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

  • 3.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    • Article
    • Google Scholar
  • 4.

    Pinto, F. S. & Marques, R. C. Desalination projects economic feasibility: a standardization of cost determinants. Renew. Sustain. Energy Rev. 78, 904–915 (2017).

    • Article
    • Google Scholar
  • 5.

    Gude, V. G. Desalination and sustainability—an appraisal and current perspective. Water Res. 89, 87–106 (2016).

  • 6.

    Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

  • 7.

    Morillo, J. et al. Comparative study of brine management technologies for desalination plants. Desalination 336, 32–49 (2014).

  • 8.

    Giwa, A., Dufour, V., Al Marzooqi, F., Al Kaabi, M. & Hasan, S. W. Brine management methods: recent innovations and current status. Desalination 407, 1–23 (2017).

  • 9.

    Juby, G. et al. Evaluation and Selection of Available Processes for a Zero-Liquid Discharge System DWPR No. 149 (US Department of the Interior Bureau of Reclamation, 2008).

  • 10.

    Mickley, M. Treatment of Concentrate DWPR Report No. 155 (US Department of the Interior Bureau of Reclamation, 2008).

  • 11.

    Ahmed, M., Shayya, W. H., Hoey, D. & Al-Handaly, J. Brine disposal from inland desalination plants. Water Int. 27, 194–201 (2002).

    • Article
    • Google Scholar
  • 12.

    Hoque, S., Alexander, T. & Gurian, P. L. Innovative technologies increase evaporation pond efficiency. IDA J. Desal. Water Reuse 2, 72–78 (2010).

    • Article
    • Google Scholar
  • 13.

    Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

  • 14.

    Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    • Article
    • Google Scholar
  • 15.

    Shi, Y. et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52, 11822–11830 (2018).

  • 16.

    Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

  • 17.

    Xu, N. et al. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).

    • Article
    • Google Scholar
  • 18.

    Finnerty, C., Zhang, L., Sedlak, D. L., Nelson, K. L. & Mi, B. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51, 11701–11709 (2017).

  • 19.

    Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

  • 20.

    Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

  • 21.

    Cooper, T. A. et al. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).

  • 22.

    Menon, A. K., Haechler, I., Kaur, S., Lubner, S. & Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella: towards zero liquid discharge wastewater management. Preprint at https://arxiv.org/abs/1905.10394 (2019).

  • 23.

    Segelstein, D. J. The Complex Refractive Index of Water (Univ. Missouri-Kansas City, 1981).

  • 24.

    Principles of Design and Operations of Wastewater Treatment Pond Systems for Plant Operators, Engineers, and Managers (US Environmental Protection Agency, 2011).

  • 25.

    Cao, F., McEnaney, K., Chen, G. & Ren, Z. A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 7, 1615–1627 (2014).

  • 26.

    Shi, L., Wang, Y., Zhang, L. & Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212–16219 (2017).

  • 27.

    Ye, M. et al. Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2016).

    • Article
    • Google Scholar
  • 28.

    Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

  • 29.

    Winston, R. Principles of solar concentrators of a novel design. Solar Energy 16, 89–95 (1974).

    • Article
    • Google Scholar
  • 30.

    Wang, Z. et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 10, 3234–3239 (2014).

  • 31.

    Hisatake, K., Tanaka, S. & Aizawa, Y. Evaporation rate of water in a vessel. J. Appl. Phys. 73, 7395–7401 (1993).

  • 32.

    Bloch, M. R., Farkas, L. & Spiegler, K. S. Solar evaporation of salt brines. Ind. Eng. Chem. 43, 1544–1553 (1951).

  • 33.

    Gunaji, N. N. & Keyes, C. G. Disposal of Brine by Solar Evaporation (US Department of the Interior, 1968).

  • 34.

    Marek, R. & Straub, J. Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transf. 44, 39–53 (2001).

  • 35.

    Harbeck, G. E. Jr The Effect of Salinity on Evaporation Report No. 272A (US Geological Survey, 1955).

  • 36.

    Langbein, W. B. & Harbeck, G. E. Studies of evaporation. Science 119, 328 (1954).

  • 37.

    Moore, J. & Runkles, J. R. Evaporation from Brine Solutions Under Controlled Laboratory Conditions Report No. 77 (Texas Water Development Board, 1968).

  • 38.

    Turk, L. J. Evaporation of brine: a field study on the Bonneville Salt Flats, Utah. Water Resour. Res. 6, 1209–1215 (1970).

    • Article
    • Google Scholar

  • Source: Resources - nature.com

    Arjen Y. Hoekstra 1967–2019

    Preventing energy loss in windows