in

A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions

  • 1.

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Vitousek, P. M., DAntonio, C. M., Loope, L. L., Westbrooks, R. & D’Antonio, C. M. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).

    ADS 

    Google Scholar 

  • 3.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 4.

    Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).

    Article 

    Google Scholar 

  • 5.

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Simberloff, D. How common are invasion-induced ecosystem impacts? Biol. Invasions 13, 1255–1268 (2011).

    Article 

    Google Scholar 

  • 9.

    Guy-Haim, T. et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: a global review and meta-analysis. Glob. Change Biol. https://doi.org/10.1111/gcb.14007 (2018).

  • 10.

    Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467 (1999).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Bartomeus, I., Vilà, M. & Santamaría, L. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155, 761–770 (2008).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, 0396–0403 (2008).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Olesen, J. M., Eskildsen, L. I. & Venkatasamy, S. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers. Distrib. 8, 181–192 (2002).

    Article 

    Google Scholar 

  • 14.

    Carvalheiro, L. G., Barbosa, E. R. M. & Memmott, J. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J. Appl. Ecol. 45, 1419–1427 (2008).

    Article 

    Google Scholar 

  • 15.

    Anderson, C. B., Griffith, C. R., Rosemond, A. D., Rozzi, R. & Dollenz, O. The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile. Biol. Conserv. 128, 467–474 (2006).

    Article 

    Google Scholar 

  • 16.

    Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 201600366 (2016).

    Google Scholar 

  • 17.

    Wiles, G. J., Bart, J., Beck, R. E. & Aguon, C. F. Impacts of the Brown Tree Snake: patterns of decline and species persistence in Guam’s Avifauna. Conserv. Biol. 17, 1350–1360 (2003).

    Article 

    Google Scholar 

  • 18.

    Ludyanskiy, M., McDonald, D. & MacNeill, D. Impact of the Zebra Mussei, a Bivalve Invader. BioScience 43, 533–544 (1993).

    Article 

    Google Scholar 

  • 19.

    Byrnes, J. E., Reynolds, P. L. & Stachowicz, J. J. Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2, 1–7 (2007).

    Article 

    Google Scholar 

  • 20.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar 

  • 21.

    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. BioScience 51, 235 (2001).

    Article 

    Google Scholar 

  • 22.

    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).

    Article 

    Google Scholar 

  • 23.

    Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).

    Article 

    Google Scholar 

  • 24.

    Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes. Proc. R. Soc. B Biol. Sci. 282, 20150421 (2015).

    Article 

    Google Scholar 

  • 25.

    Anthelme, F., Cavieres, L. A. & Dangles, O. Facilitation among plants in alpine environments in the face of climate change. Front. Plant Sci. 5 (2014).

  • 26.

    Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    van der Heide, T. et al. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336, 1432–1434 (2012).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 28.

    Nummi, P. & Holopainen, S. Whole-community facilitation by beaver: ecosystem engineer increases waterbird diversity: ecosystem engineer increases waterbird diversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 623–633 (2014).

    Article 

    Google Scholar 

  • 29.

    Rosell, F., Bozser, O., Collen, P. & Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal. Rev. 35, 248–276 (2005).

    Article 

    Google Scholar 

  • 30.

    He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Lotze, H. K. et al. Depletion, degredation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Grosholz, E. Ecological and evolutionary consequences of coastal invasions. Trends Ecol. Evol. 17, 22–27 (2002).

    Article 

    Google Scholar 

  • 36.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article 

    Google Scholar 

  • 39.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Bruno, J. F. & Bertness, M. D. Habitat modification and facilitation in benthic marine communities. in Marine Community Ecology (eds Bertness, M. D., Gaines, S. & Hay, M.) 201–216 (Sinauer, 2001).

  • 42.

    De Fouw, J. et al. Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr. Biol. 26, 1051–1056 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Ellison, A. M., Farnsworth, E. J. & Twilley, R. R. Facultative mutualism between red mangroves and root‐fouling sponges in belizean mangal. Ecology https://doi.org/10.2307/2265744 (1996).

  • 44.

    Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).

    ADS 
    Article 

    Google Scholar 

  • 45.

    McKee, K. L., Mendelssohn, I. A. & Materne, M. D. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob. Ecol. Biogeogr. 13, 65–73 (2004).

    Article 

    Google Scholar 

  • 46.

    Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt Marsh Dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Wang, H., Fu, R., Kumar, A. & Li, W. Intensification of summer rainfall variability in the southeastern United States during recent decades. J. Hydrometeorol. 11, 1007–1018 (2010).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Stiven, A. E. & Gardner, S. A. Population processes in the ribbed mussel Geukensia demissa (Dillwyn) in a North Carolina salt marsh tidal gradient: spatial pattern, predation, growth and mortality. J. Exp. Mar. Biol. Ecol. 160, 81–102 (1992).

    Article 

    Google Scholar 

  • 49.

    Angelini, C. & Silliman, B. R. Patch size-dependent community recovery after massive disturbance. Ecology 93, 101–110 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 50.

    Mendelssohn, I. & Morris, J. Ecophysiological controls on the productivity of Spartina alterniflora. in Concepts and Controversies in Tidal Marsh Ecology (eds Weinstein, M. & Kreeger, D.) 59–80 (Kluwer Academic Publishers, 1999).

  • 51.

    Bertness, M. D. Ribbed mussels and Spartina alterniflora production in a New England marsh. Ecology 65, 1794–1807 (1984).

    Article 

    Google Scholar 

  • 52.

    Siemann, E., Carrillo, J. A., Gabler, C. A., Zipp, R. & Rogers, W. E. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Ecol. Manag. 258, 546–553 (2009).

    Article 

    Google Scholar 

  • 53.

    Campbell, T. A. & Long, D. B. Feral swine damage and damage management in forested ecosystems. Ecol. Manag. 257, 2319–2326 (2009).

    Article 

    Google Scholar 

  • 54.

    Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).

    Article 

    Google Scholar 

  • 55.

    Graves, H. B. Behavior and ecology of wild and feral swine (Sus-Scrofa). J. Anim. Sci. 58, 482–492 (1984).

    Article 

    Google Scholar 

  • 56.

    Wood, G. W. & Roark, N. D. Food habits of feral hogs in coastal South Carolina. J. Wildl. Manag. 44, 506–511 (1980).

    Article 

    Google Scholar 

  • 57.

    Sharp, S. J. & Angelini, C. The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion. Biol. Invasions https://doi.org/10.1007/s10530-019-02018-5 (2019).

  • 58.

    Crotty, S. M. et al. Foundation species patch configuration mediates salt marsh biodiversity, stability and multifunctionality. Ecol. Lett. 21, 1681–1692 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Zhu, Z. et al. Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. https://doi.org/10.1038/s41893-020-0556-z (2020).

  • 60.

    Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr. Comp. Biol. 50, 158–175 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Silliman, B. R. et al. Field experiments and meta-analysis reveal wetland vegetation as a crucial element in the coastal protection paradigm. Curr. Biol. 29, 1800–1806 (2019). e3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Albins, M. & Hixon, M. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367, 233–238 (2008).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Albins, M. Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar. Ecol. Prog. Ser. 522, 231–243 (2015).

    ADS 
    Article 

    Google Scholar 

  • 68.

    Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).

    Article 

    Google Scholar 

  • 70.

    Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Persico, E. P., Sharp, S. J. & Angelini, C. Feral hog disturbance alters carbon dynamics in southeastern US salt marshes. Mar. Ecol. Prog. Ser. 580, 57–68 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 72.

    Shaffer, G. P. et al. System response, nutria herbivory, and vegetation recovery of a wetland receiving secondarily-treated effluent in coastal Louisiana. Ecol. Eng. 79, 120–131 (2015).

    Article 

    Google Scholar 

  • 73.

    Fleming, P. A. et al. Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function?: loss of Australian digging mammals and ecosystem function. Mammal. Rev. 44, 94–108 (2014).

    Article 

    Google Scholar 

  • 74.

    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Croll, D. A. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Siero, E. et al. Grazing away the resilience of patterned ecosystems. Am. Nat. 193, 472–480 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Crotty, S. M. & Angelini, C. Geomorphology and species interactions control facilitation cascades in a salt marsh ecosystem. Curr. Biol. 30, 1562–1571.e4 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Geisser, H. & Reyer, H.-U. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 68, 939–946 (2004).

    Article 

    Google Scholar 

  • 79.

    Engeman, R. M. et al. Feral swine management for conservation of an imperiled wetland habitat: Florida’s vanishing seepage slopes. Biol. Conserv. 134, 440–446 (2007).

    Article 

    Google Scholar 

  • 80.

    Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioScience 64, 291–299 (2014).

    Article 

    Google Scholar 

  • 81.

    McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • 82.

    Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Ford, M. A. & Grace, J. B. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J. Ecol. 86, 974–982 (1998).

    Article 

    Google Scholar 

  • 84.

    Hensel, M. J. S. & Silliman, B. R. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl Acad. Sci. USA 110, 20621–20626 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Silliman, B. R. et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 28, R532–R537 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Morse, N. B. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, art12 (2014).

    Article 

    Google Scholar 

  • 87.

    Goigel Turner, M. Effects of grazing by feral horses, clipping, trampling, and burning on a Georgia salt marsh. Estuaries. 10, 54–60 (2014).

    Article 

    Google Scholar 

  • 88.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.4. https://CRAN.R-project.org/package=DHARMa (2021).

  • 89.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).

  • 90.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 91.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 92.

    AgiSoft PhotoScan Professional. (AgiSoft, 2016).

  • 93.

    Rasband, W. S. ImageJ. (U.S. National Institutes of Health, 1997).

  • 94.

    Kuenzler, E. J. Structure and energy flow of a mussel population in a Georgia salt marsh. Limnol. Oceanogr. 6, 191–204 (1961).

    ADS 
    Article 

    Google Scholar 

  • 95.

    Length, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.R-project.org/package=emmeans (2021).

  • 96.

    Guichard, F., Halpin, P. M., Allison, G. W., Lubchenco, J. & Menge, B. A. Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am. Nat. 161, 889–904 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Silliman, B. R., van de Koppel, J., Bertness, M. D., Stanton, L. E. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi)

    Terrestrial connectivity, upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic network