in

A multi-proxy approach to exploring Homo sapiens’ arrival, environments and adaptations in Southeast Asia

  • 1.

    Sponheimer, M. Isotopic evidence of early hominin diets. Proc. Natl. Acad. Sci. USA 110, 10513–10518 (2013).

    CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar 

  • 2.

    Fleagle, J. G. et al. (eds) Out of Africa I: The first hominin colonization of Eurasia. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).

    Google Scholar 

  • 3.

    Norton, C. J. & Braun, D. R. (eds) Asian Paleoanthropology: From Africa to China and Beyond. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).

    Google Scholar 

  • 4.

    Bettis, E. A. III. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Ciochon, R. L. Divorcing hominins from the StegodonAiluropoda Fauna: New views on the antiquity of hominins in Asia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 111–126 (Springer, 2010).

    Chapter 

    Google Scholar 

  • 6.

    Sémah, A.-M., Sémah, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: Changes between the Lower and the early Middle Pleistocene in Java (Indonesia). Quat. Int. 223, 451–454 (2010).

    Article 

    Google Scholar 

  • 7.

    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).

    Article 
    ADS 

    Google Scholar 

  • 8.

    Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 10.

    Sutikna, T. et al. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature 532, 366–369 (2016).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 12.

    De Vos, J. Reconsideration of Pleistocene cave faunas from South China and their relation to the faunas from Java. Cour. Forsch. Inst. Senckenberg 69, 259–266 (1984).

    Google Scholar 

  • 13.

    Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A diverse hominoid fauna from the late Middle Pleistocene breccia cave of Tham Kuyen, Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 74, 1–11 (1994).

    Google Scholar 

  • 14.

    Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A review of the Pleistocene hominoid fauna of the Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 76, 1–24 (1995).

    Google Scholar 

  • 15.

    Reyes-Centeno, H. Out of Africa and into Asia: Fossil and genetic evidence on modern origins and dispersal. Quat. Int. 416, 249–262 (2016).

    Article 

    Google Scholar 

  • 16.

    Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, 9067 (2017).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Dennell, R., Martinón-Torres, M., Bermúdez de Castro, J.-M. & Xing, G. A demographic history of Late Pleistocene China. Quat. Int. 559, 4–13 (2020).

    Article 

    Google Scholar 

  • 18.

    Westaway, K. E. et al. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 19.

    Bacon, A.-M. et al. Late Pleistocene mammalian assemblages of Southeast Asia: New dating, mortality profiles and evolution of the predator-prey relationships in an environmental context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 101–127 (2015).

    Article 

    Google Scholar 

  • 20.

    Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Bacon, A.-M. et al. A rhinocerotid-dominated megafauna at the MIS6-5 transition: The late Middle Pleistocene Coc Muoi assemblage, Lang Son province, Vietnam. Quat. Sci. Rev. 186, 123–141 (2018).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144 (2018).

    Article 

    Google Scholar 

  • 23.

    Suraprasit, K., Jongauttchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).

    Article 

    Google Scholar 

  • 24.

    Sun, F. et al. Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 1–12 (2019).

    Article 

    Google Scholar 

  • 25.

    Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 26.

    Shackelford, L. et al. Additional evidence for early modern human morphological diversity in Southeast Asia at Tam Pà Ling, Laos. Quat. Int. 466, 93–106 (2018).

    Article 

    Google Scholar 

  • 27.

    Petraglia, M. D., Breeze, P. S. & Groucutt, H. S. Blue Arabia: Examining colonisation and dispersal models. In Geological setting, Palaeoenvironment and Archaeology of the Red Sea (eds Rasul, N. M. A. & Stewart, I. C. F.) 675–683 (Springer International Publishing, 2019).

    Chapter 

    Google Scholar 

  • 28.

    Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 29.

    Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 30.

    Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 31.

    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Rink, W. J., Wei, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda-Stegodon fauna and Gigantopithecus in Guangxi Province, Southern China. Quat. Res. 69, 377–387 (2008).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Norton, C. J., Jin, C., Wang, Y. & Zhang, Y. Rethinking the ¨Palearctic-Oriental biogeographic boundary in Quaternary China. In Asian Paleoanthropology: From Africa to China and Beyond (eds Norton, C. J. & Braun, D. R.) 81–100 (Vertebrate Paleobiology and Paleoanthropology, 2010).

    Google Scholar 

  • 34.

    Turvey, S. T., Tong, H., Stuart, A. J. & Lister, A. M. Holocene survival of Late Pleistocene megafauna in China: A critical review of the evidence. Quat. Sci. Rev. 76, 156–166 (2013).

    Article 
    ADS 

    Google Scholar 

  • 35.

    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167 (2017).

    Article 

    Google Scholar 

  • 36.

    Owen-Smith, R. N. Megaherbivores. The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).

    Book 

    Google Scholar 

  • 37.

    Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeography 37, 1432–1449 (2010).

    Google Scholar 

  • 38.

    Graham, R. W. Diversity and community structure of the late Pleistocene mammal fauna of North America. Acta Zool. Fenn. 170, 181–192 (1985).

    Google Scholar 

  • 39.

    Graham, R. W. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 40.

    Price, G. J. Fossil bandicoots (Marsupiala, Peramelidae) and environmental change during the Pleistocene on the Darling Downs, Southern Queensland, Australia. J. Syst. Palaeontol. 2, 347–356 (2004).

    Article 

    Google Scholar 

  • 41.

    Stewart, J. R. The progressive effect of the individualistic response of species to Quaternary climate change: An analysis of British mammalian faunas. Quat. Sci. Rev. 27, 2499–2508 (2008).

    Article 
    ADS 

    Google Scholar 

  • 42.

    Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. USA 116, 21478–21483 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 43.

    Zeitoun, V., Chinnawut, W., Debruyne, R., Frère, S. & Auetrakulvit, P. A sustainable review of the Middle Pleistocene benchmark sites including the Ailuropoda-Stegodon faunal complex: The Proboscidean point of view. Quat. Int. 416, 12–26 (2010).

    Article 

    Google Scholar 

  • 44.

    Jablonski, D. & Sepkoski, J. J. Jr. Paleobiology, community ecology and scales of ecological patterns. Ecology 77, 1367–1378 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Graham, R. W. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. In Paleobiogeography: Generating New Insights Into the Coevolution of the Earth and Its Biota (eds Lieberman, B. S. & Stigall, A. L.) 141–157 (Paleontological Society Papers, 2005).

    Google Scholar 

  • 46.

    Stewart, J. R. The evolutionary consequence of the individualistic response to climate change. J. Evol. Biol. 22, 2363–2375 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Tougard, C. & Montuire, S. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: Focus on fossil faunas from Thailand. Quat. Sci. Rev. 25, 126–141 (2006).

    Article 
    ADS 

    Google Scholar 

  • 49.

    Zeitoun, V. et al. Dating, stratigraphy and taphonomy of the Pleistocene site of Ban Fa Suai II (Northern Thailand): Contributions to the study of paleobiodiversity in Southeast Asia. Ann. Paléontol. 105, 275–285 (2019).

    Article 

    Google Scholar 

  • 50.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    Article 

    Google Scholar 

  • 51.

    Bennett, K. D. & Provan, J. What do we mean by refugia? Quat. Sci. Rev. 27, 2449–2455 (2008).

    Article 
    ADS 

    Google Scholar 

  • 52.

    Leonard, J. A., Wayne, R. K. & Cooper, A. Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci. USA 97, 1651–1654 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 53.

    Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ectomorph. Curr. Biol. 17, 1146–1150 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Barnes, I., Matheus, P., Shapiro, B., Jensen, D. & Cooper, A. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267–2270 (2002).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 55.

    Hofreiter, M. et al. Lack of phylogeography in European mammals before the last glaciation. Proc. Natl. Acad. Sci. USA 35, 12963–12968 (2004).

    Article 
    ADS 

    Google Scholar 

  • 56.

    Shapiro, B. et al. Rise and Fall of the Beringian Steppe Bison. Science 306, 1561–1565 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 57.

    Rohland, N. et al. The population history of extant and extinct hyenas. Mol. Biol. Evol. 22, 2435–2443 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Gilbert, M. T. P. et al. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc. Natl. Acad. Sci. USA 105, 8327–8332 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 59.

    Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA. Proc. Natl. Acad. Sci. USA 106, 21754–21759 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 60.

    Campos, P. F. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl. Acad. Sci. USA 107, 5675–5680 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 61.

    Campos, P. F. et al. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 19, 4863–4875 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–365 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 63.

    Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2019).

    Article 

    Google Scholar 

  • 64.

    Lord, E. et al. Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros. Curr. Biol. 30, 3871–3879 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Lister, A. M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004).

    Article 

    Google Scholar 

  • 66.

    Barnosky, A. D. Effects of Quaternary climatic change on speciation in mammals. J. Mammal. Evol. 12, 247–264 (2005).

    Article 

    Google Scholar 

  • 67.

    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 68.

    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jeager, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake cave in northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 69.

    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jeager, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).

    Article 
    ADS 

    Google Scholar 

  • 70.

    Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of Pleistocene to Holocene caprines in Thailand: Implications for the extirpation and conservation of Himalayan gorals. Front. Ecol. Evol. 8, 1–16 (2020).

    Article 

    Google Scholar 

  • 71.

    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals: Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).

    Article 

    Google Scholar 

  • 72.

    Stacklyn, S. et al. Carbon and oxygen isotopic evidence for diets, environments and niche differentiation of early Pleistocene pandas and associated mammals in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 351–361 (2017).

    Article 

    Google Scholar 

  • 73.

    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).

    Article 
    ADS 

    Google Scholar 

  • 74.

    Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 40, 503–537 (1989).

    CAS 
    Article 

    Google Scholar 

  • 75.

    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

    Article 

    Google Scholar 

  • 76.

    Zazzo, A. et al. Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26, 294–309 (2000).

    Article 

    Google Scholar 

  • 77.

    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article 
    ADS 

    Google Scholar 

  • 78.

    Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 385–390 (1984).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 79.

    Luz, B., Kolodny, Y. & Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, 1689–1693 (1984).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 80.

    Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ 18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim. Cosmochim. Acta 62, 1839–1850 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 81.

    Fricke, H. C., Clyde, W. C., O’Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 82.

    Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 83.

    Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 84.

    Kohn, M. J. & Cerling, T. E. Stable isotope compositions of biological apatite. Rev. Mineral. Geochem. 48, 455–488 (2002).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Zheng, Z. & Lei, Z.-Q. A 400,000 years record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 339–362 (1999).

    Article 

    Google Scholar 

  • 86.

    Li, S.-P. et al. Pleistocene vegetation in Guangxi, south China, based on palynological data from seven karst caves. Grana 59, 94–106 (2020).

    Article 

    Google Scholar 

  • 87.

    Wang, Y. et al. Millenial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 88.

    Chen, H. et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217–220 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 89.

    Kelly, M. J. et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 20–38 (2006).

    Article 

    Google Scholar 

  • 90.

    Milano, S. et al. Environmental conditions framing the first evidence of modern humans at Tam Pà Ling, Laos: A stable isotope record from terrestrial gastropod carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 352–363 (2018).

    Article 

    Google Scholar 

  • 91.

    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular southeast Asia during the last glacial period: A savanna corridor in Sundaland? Quat. Sci. Rev. 24, 228–242 (2005).

    Article 

    Google Scholar 

  • 92.

    Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: An oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).

    Article 
    ADS 

    Google Scholar 

  • 93.

    Geist, V. On the relationship of social evolution and ecology in ungulates. Am. Zool. 14, 205–220 (1974).

    Article 

    Google Scholar 

  • 94.

    Bacon, A.-M. et al. Testing the savannah corridor hypothesis during MIS2: The Boh Dambang hyena site in southern Cambodia. Quat. Int. 464, 417–439 (2018).

    Article 

    Google Scholar 

  • 95.

    Cannon, C. H., Robert, J., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbances. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 96.

    Yuan, D. et al. Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575–578 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 97.

    Hublin, J.-J. How old are the oldest Homo sapiens in Far East Asia? Proc. Natl. Acad. Sci. USA 118, e2101173118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R. & Petraglia, M. D. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quat. Int. 300, 32–47 (2013).

    Article 

    Google Scholar 

  • 99.

    Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-Iena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 100.

    Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 25, 306–317 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 101.

    Roberts, P. & Petraglia, M. D. Pleistocene rainforests: Barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).

    Article 

    Google Scholar 

  • 102.

    Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 103.

    Barker, G. et al. The “human revolution” in lowland tropical Southeast Asia: The antiquity and behavior of anatomically modern humans at Niah cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 104.

    Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: Evidence from the terminal Pleistocene at Lobang Hangus, Niah caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).

    Article 

    Google Scholar 

  • 105.

    Mellars, P. Going East: New genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 106.

    Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial populations turnover in Europe. Curr. Biol. 26, 827–833 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 107.

    Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 108.

    Zachwieja, A. J. et al. Understanding Late Pleistocene human land preference using ecological niche models in an Australasian test case. Quat. Int. 563, 13–28 (2020).

    Article 

    Google Scholar 

  • 109.

    Shea, J. J. Homo sapiens is as Homo sapiens was: Behavioral variability versus “behavioral modernity” in Paleolithic archaeology. Curr. Anthropol. 52, 1–35 (2011).

    Article 

    Google Scholar 

  • 110.

    Sun, X.-F. et al. Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China. Proc. Natl. Acad. Sci. USA 118, e2019158118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Martinón-Torres, M. et al. On the misidentification and unreliable context of the new “human teeth” from Fuyan Cave (China). Proc. Natl. Acad. Sci. USA 118, e2102961118 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 112.

    Timmerman, A. & Friedrich, F. T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 113.

    Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    De Deckker, P. et al. Marine Isotope Stage 4 in Australasia: A full glacial culminating 65,000 years ago: Global connections and implications for human dispersal. Quat. Sci. Rev. 204, 187–207 (2019).

    Article 
    ADS 

    Google Scholar 

  • 115.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 116.

    O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul?. Proc. Natl. Acad. Sci. USA 115, 8482–8490 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 117.

    Brain, C. K. The Hunters and the Hunted? An Introduction to African Cave Taphonomy (The University of Chicago press, 1981).

    Google Scholar 

  • 118.

    Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. J. Zool. Lond. 266, 25–35 (2006).

    Article 

    Google Scholar 

  • 119.

    Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 120.

    Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 112, 11467–11472 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 121.

    Tejada-Lara, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).

    Article 
    CAS 

    Google Scholar 

  • 122.

    Kohn, M. J. Carbon isotope compositions of terrestrial C3 Plants as Indicators of (Paleo)ecology and (Paleo)climate. Proc. Natl. Acad. Sci. USA 107, 19691–19695 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Eat me, or don’t eat me?

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research