in

A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

  • 1.

    Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).

    Google Scholar 

  • 2.

    Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).

    Article 

    Google Scholar 

  • 3.

    Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).

    Google Scholar 

  • 4.

    Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).

    Article 

    Google Scholar 

  • 5.

    Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).

    Article 

    Google Scholar 

  • 6.

    Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).

    Article 

    Google Scholar 

  • 7.

    Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).

    Article 

    Google Scholar 

  • 8.

    Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).

    Google Scholar 

  • 10.

    Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).

    Google Scholar 

  • 11.

    Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).

    Google Scholar 

  • 12.

    Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).

    Article 

    Google Scholar 

  • 13.

    Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).

    Article 

    Google Scholar 

  • 14.

    Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).

    Article 

    Google Scholar 

  • 17.

    Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).

    CAS 
    Article 

    Google Scholar 

  • 20.

    van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).

    Google Scholar 

  • 25.

    Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).

    Google Scholar 

  • 26.

    Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).

    Article 

    Google Scholar 

  • 37.

    Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 38.

    Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).

    Article 

    Google Scholar 

  • 43.

    Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).

    Article 

    Google Scholar 

  • 44.

    Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).

    Google Scholar 

  • 46.

    Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed increasing water constraint on vegetation growth over the last three decades

    Rapid evolution of bacterial mutualism in the plant rhizosphere