in

An ecological network approach to predict ecosystem service vulnerability to species losses

  • 1.

    Millennium Ecosystem Assessment (Program). Ecosystems and human well-being: our human planet: summary for decision-makers. The Millennium Ecosystem Assessment series. https://doi.org/10.1196/annals.1439.003 (2005).

  • 2.

    Mulder, C. et al. 10 Years later: revisiting priorities for science and society a decade after the millennium ecosystem assessment. Adv. Ecol. Res. 53, 1–53 (2015).

  • 3.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 (2018).

  • 4.

    Díaz, S. et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustainab. 14, 1–16 (2015).

  • 5.

    Hungate, B. A. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).

    Article  Google Scholar 

  • 6.

    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).

    PubMed  Article  Google Scholar 

  • 8.

    Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).

    Article  Google Scholar 

  • 9.

    Jacob, U. et al. Valuing biodiversity and ecosystem services in a complex marine ecosystem. (eds Belgrano, A., Woodward, G. & Jacob U.) in Aquatic Functional Biodiversity. 189–207 (Academic Press, 2015).

  • 10.

    Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).

    PubMed  Article  Google Scholar 

  • 11.

    Bohan, D. et al. Networking our way to better ecosystem service provision. Trends Ecol. Evol. 31, 105–115 (2016).

    Article  Google Scholar 

  • 12.

    Dunne, A. J. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 13.

    Binzer, A. et al. The susceptibility of species to extinctions in model communities. Basic Appl. Ecol. 12, 590–599 (2011).

    Article  Google Scholar 

  • 14.

    Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).

    Article  Google Scholar 

  • 15.

    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1711–1723 (2009).

    Article  Google Scholar 

  • 16.

    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Dobson, A. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B Biol. Sci. 364, 1665–1682 (2009).

    Article  Google Scholar 

  • 18.

    Estrada, E. Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244, 296–307 (2007).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 19.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

  • 20.

    Curtsdotter, A. et al. Robustness to secondary extinctions: comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).

    Article  Google Scholar 

  • 21.

    Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).

  • 22.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

  • 23.

    Dee, L. E., De Lara, M., Costello, C. & Gaines, S. D. To what extent can ecosystem services motivate protecting biodiversity? Ecol. Lett. 20, 935–946 (2017).

    PubMed  Article  Google Scholar 

  • 24.

    Dunne, J., Williams Richard, J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 25.

    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).

    Article  Google Scholar 

  • 26.

    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).

    PubMed  Article  Google Scholar 

  • 27.

    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).

    PubMed  Article  Google Scholar 

  • 28.

    Allesina, S. et al. The robustness and restoration of a network of ecological networks. Science 5, 1–8 (2013).

    Google Scholar 

  • 29.

    Bane, M. S., Pocock, M. J. O. & James, R. Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecol. Evol. 8, 10794–10804 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273, 291–302 (2004).

    ADS  Article  Google Scholar 

  • 31.

    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed  Article  Google Scholar 

  • 32.

    Thellmann, K. et al. Tipping points in the supply of ecosystem services of a mountainous watershed in Southeast Asia. Sustain 10, 1–15 (2018).

    Article  Google Scholar 

  • 33.

    Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–68 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).

    PubMed  Article  Google Scholar 

  • 35.

    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    PubMed  Article  Google Scholar 

  • 36.

    Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).

    Article  Google Scholar 

  • 37.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science https://doi.org/10.1126/science.1205106 (2011).

  • 38.

    He, Q. & Silliman, B. R. Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr. 86, 278–294 (2016).

  • 39.

    Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Brose, U. Complex food webs prevent competitive exclusion among producer species. Proc. R. Soc. B Biol. Sci. 275, 2507–2514 (2008).

  • 41.

    Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    De Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

    PubMed  Article  Google Scholar 

  • 43.

    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).

    Article  Google Scholar 

  • 44.

    Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).

    Article  Google Scholar 

  • 45.

    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

  • 46.

    Gaston, K. J. et al. Population abundance and ecosystem service provision: the case of birds. Bioscience 68, 264–272 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Davies, T. W. et al. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes. PLoS ONE 6, e28362 (2011).

  • 48.

    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

  • 49.

    Xiao, H. et al. Win-wins for biodiversity and ecosystem service conservation depend on the trophic levels of the species providing services. J. Appl. Ecol. 55, 2160–2170 (2018).

    Article  Google Scholar 

  • 50.

    Dobson, A., Allesina, S., Lafferty, K. & Pascual, M. The assembly, collapse and restoration of food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1803–1806 (2009).

    Article  Google Scholar 

  • 51.

    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 52.

    Hechinger, R. F. et al. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries. Ecology 92, 791 (2011).

    Article  Google Scholar 

  • 53.

    California Department of Fish and Wildlife. 2018-2019 California Saltwater Sport Fishing Regulations. p. 12–14 (2018).

  • 54.

    eBird. eBird: an online database of bird distribution and abundance. https://ebird.org. (2012).

  • 55.

    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. xx, 1–13 (2019).

    Google Scholar 

  • 56.

    Strimas-Mackey, M., Miller, E. & Hochachka, W. Cornell Lab of Ornithology. eBird Data Extraction and Processing in R [R package auk version 0.3.2]. (Comprehensive R Archive Network (CRAN), 2019).

  • 57.

    Secretaria de Medio Ambiente Y Recursos Naturales. Secretaria de Medio Ambiente Y Recursos Naturales. Subsecretaria de gestion para la proteccion ambiental. (2018).

  • 58.

    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Modell. 220, 370–382 (2009).

  • 59.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 426 (2006).

    Google Scholar 

  • 60.

    Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: a birdwatching example. Biol. Conserv. 144, 2728–2732 (2011).

    Article  Google Scholar 

  • 61.

    Wang, H., Zhewei, W., Junhao, G., Wang, S. & Huang, Z. Personalized PageRank to a Target Node (Cornell University, 2020).

  • 62.

    Bryan, K. & Leise, T. The linear algebra behind Google. SIAM Rev. 3, 13 (2009).

    MATH  Google Scholar 

  • 63.

    Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

  • 64.

    Rabinwitz, D. Seven forms of rarity. (ed Sygne, H.) in The Biological Aspects of Rare Plant Conservation. 205–217 (John Wiley & Sons Ltd., 1981).

  • 65.

    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).

    Article  Google Scholar 

  • 66.

    Lyons, K. G., Brigham, C. A., Traut, B. H. & Schwartz, M. W. Rare species and ecosystem functioning. Conserv. Biol. 19, 1019–1024 (2005).

    Article  Google Scholar 

  • 67.

    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

  • 68.

    Jacob, U. et al. The role of body size in complex food webs. A cold case. Adv. Ecol. Res. 45, 181–223 (2011).

  • 69.

    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Growing support for valuing ecosystems will help conserve the planet

    Visualizing a climate-resilient MIT