in

An ecological network approach to predict ecosystem service vulnerability to species losses

  • 1.

    Millennium Ecosystem Assessment (Program). Ecosystems and human well-being: our human planet: summary for decision-makers. The Millennium Ecosystem Assessment series. https://doi.org/10.1196/annals.1439.003 (2005).

  • 2.

    Mulder, C. et al. 10 Years later: revisiting priorities for science and society a decade after the millennium ecosystem assessment. Adv. Ecol. Res. 53, 1–53 (2015).

  • 3.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270 (2018).

  • 4.

    Díaz, S. et al. The IPBES Conceptual Framework—connecting nature and people. Curr. Opin. Environ. Sustainab. 14, 1–16 (2015).

  • 5.

    Hungate, B. A. et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience 64, 49–57 (2014).

    Article  Google Scholar 

  • 6.

    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).

    PubMed  Article  Google Scholar 

  • 8.

    Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).

    Article  Google Scholar 

  • 9.

    Jacob, U. et al. Valuing biodiversity and ecosystem services in a complex marine ecosystem. (eds Belgrano, A., Woodward, G. & Jacob U.) in Aquatic Functional Biodiversity. 189–207 (Academic Press, 2015).

  • 10.

    Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).

    PubMed  Article  Google Scholar 

  • 11.

    Bohan, D. et al. Networking our way to better ecosystem service provision. Trends Ecol. Evol. 31, 105–115 (2016).

    Article  Google Scholar 

  • 12.

    Dunne, A. J. et al. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 13.

    Binzer, A. et al. The susceptibility of species to extinctions in model communities. Basic Appl. Ecol. 12, 590–599 (2011).

    Article  Google Scholar 

  • 14.

    Eklöf, A., Tang, S. & Allesina, S. Secondary extinctions in food webs: a Bayesian network approach. Methods Ecol. Evol. 4, 760–770 (2013).

    Article  Google Scholar 

  • 15.

    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1711–1723 (2009).

    Article  Google Scholar 

  • 16.

    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Dobson, A. Food-web structure and ecosystem services: insights from the Serengeti. Philos. Trans. R. Soc. B Biol. Sci. 364, 1665–1682 (2009).

    Article  Google Scholar 

  • 18.

    Estrada, E. Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution. J. Theor. Biol. 244, 296–307 (2007).

    MathSciNet  PubMed  MATH  Article  PubMed Central  Google Scholar 

  • 19.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

  • 20.

    Curtsdotter, A. et al. Robustness to secondary extinctions: comparing trait-based sequential deletions in static and dynamic food webs. Basic Appl. Ecol. 12, 571–580 (2011).

    Article  Google Scholar 

  • 21.

    Srinivasan, U. T., Dunne, J. A., Harte, J. & Martinez, N. D. Response of complex food webs to realistic extinction sequences. Ecology 88, 671–682 (2007).

  • 22.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

  • 23.

    Dee, L. E., De Lara, M., Costello, C. & Gaines, S. D. To what extent can ecosystem services motivate protecting biodiversity? Ecol. Lett. 20, 935–946 (2017).

    PubMed  Article  Google Scholar 

  • 24.

    Dunne, J., Williams Richard, J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article  Google Scholar 

  • 25.

    Allesina, S., Bodini, A. & Pascual, M. Functional links and robustness in food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1701–1709 (2009).

    Article  Google Scholar 

  • 26.

    Staniczenko, P. P. A., Lewis, O. T., Jones, N. S. & Reed-Tsochas, F. Structural dynamics and robustness of food webs. Ecol. Lett. 13, 891–899 (2010).

    PubMed  Article  Google Scholar 

  • 27.

    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).

    PubMed  Article  Google Scholar 

  • 28.

    Allesina, S. et al. The robustness and restoration of a network of ecological networks. Science 5, 1–8 (2013).

    Google Scholar 

  • 29.

    Bane, M. S., Pocock, M. J. O. & James, R. Effects of model choice, network structure, and interaction strengths on knockout extinction models of ecological robustness. Ecol. Evol. 8, 10794–10804 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and robustness of marine food webs. Mar. Ecol. Prog. Ser. 273, 291–302 (2004).

    ADS  Article  Google Scholar 

  • 31.

    Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    PubMed  Article  Google Scholar 

  • 32.

    Thellmann, K. et al. Tipping points in the supply of ecosystem services of a mountainous watershed in Southeast Asia. Sustain 10, 1–15 (2018).

    Article  Google Scholar 

  • 33.

    Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–68 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Eklöf, A. & Ebenman, B. Species loss and secondary extinctions in simple and complex model communities. J. Anim. Ecol. 75, 239–246 (2006).

    PubMed  Article  Google Scholar 

  • 35.

    Vieira, M. C. & Almeida-Neto, M. A simple stochastic model for complex coextinctions in mutualistic networks: robustness decreases with connectance. Ecol. Lett. 18, 144–152 (2015).

    PubMed  Article  Google Scholar 

  • 36.

    Wilmers, C. C., Estes, J. A., Edwards, M., Laidre, K. L. & Konar, B. Do trophic cascades affect the storage and flux of atmospheric carbon? An analysis of sea otters and kelp forests. Front. Ecol. Environ. 10, 409–415 (2012).

    Article  Google Scholar 

  • 37.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science https://doi.org/10.1126/science.1205106 (2011).

  • 38.

    He, Q. & Silliman, B. R. Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr. 86, 278–294 (2016).

  • 39.

    Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Brose, U. Complex food webs prevent competitive exclusion among producer species. Proc. R. Soc. B Biol. Sci. 275, 2507–2514 (2008).

  • 41.

    Rudolf, V. H. W. & Lafferty, K. D. Stage structure alters how complexity affects stability of ecological networks. Ecol. Lett. 14, 75–79 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    De Visser, S. N., Freymann, B. P. & Olff, H. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact. J. Anim. Ecol. 80, 484–494 (2011).

    PubMed  Article  Google Scholar 

  • 43.

    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).

    Article  Google Scholar 

  • 44.

    Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).

    Article  Google Scholar 

  • 45.

    Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

  • 46.

    Gaston, K. J. et al. Population abundance and ecosystem service provision: the case of birds. Bioscience 68, 264–272 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Davies, T. W. et al. Dominance, biomass and extinction resistance determine the consequences of biodiversity loss for multiple coastal ecosystem processes. PLoS ONE 6, e28362 (2011).

  • 48.

    Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

  • 49.

    Xiao, H. et al. Win-wins for biodiversity and ecosystem service conservation depend on the trophic levels of the species providing services. J. Appl. Ecol. 55, 2160–2170 (2018).

    Article  Google Scholar 

  • 50.

    Dobson, A., Allesina, S., Lafferty, K. & Pascual, M. The assembly, collapse and restoration of food webs. Philos. Trans. R. Soc. B Biol. Sci. 364, 1803–1806 (2009).

    Article  Google Scholar 

  • 51.

    McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 52.

    Hechinger, R. F. et al. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries. Ecology 92, 791 (2011).

    Article  Google Scholar 

  • 53.

    California Department of Fish and Wildlife. 2018-2019 California Saltwater Sport Fishing Regulations. p. 12–14 (2018).

  • 54.

    eBird. eBird: an online database of bird distribution and abundance. https://ebird.org. (2012).

  • 55.

    Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. xx, 1–13 (2019).

    Google Scholar 

  • 56.

    Strimas-Mackey, M., Miller, E. & Hochachka, W. Cornell Lab of Ornithology. eBird Data Extraction and Processing in R [R package auk version 0.3.2]. (Comprehensive R Archive Network (CRAN), 2019).

  • 57.

    Secretaria de Medio Ambiente Y Recursos Naturales. Secretaria de Medio Ambiente Y Recursos Naturales. Subsecretaria de gestion para la proteccion ambiental. (2018).

  • 58.

    Kones, J. K., Soetaert, K., van Oevelen, D. & Owino, J. O. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol. Modell. 220, 370–382 (2009).

  • 59.

    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 426 (2006).

    Google Scholar 

  • 60.

    Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: a birdwatching example. Biol. Conserv. 144, 2728–2732 (2011).

    Article  Google Scholar 

  • 61.

    Wang, H., Zhewei, W., Junhao, G., Wang, S. & Huang, Z. Personalized PageRank to a Target Node (Cornell University, 2020).

  • 62.

    Bryan, K. & Leise, T. The linear algebra behind Google. SIAM Rev. 3, 13 (2009).

    MATH  Google Scholar 

  • 63.

    Allesina, S. & Pascual, M. Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5, e1000494 (2009).

  • 64.

    Rabinwitz, D. Seven forms of rarity. (ed Sygne, H.) in The Biological Aspects of Rare Plant Conservation. 205–217 (John Wiley & Sons Ltd., 1981).

  • 65.

    Pimm, S. L., Jones, H. L. & Diamond, J. On the risk of extinction. Am. Nat. 132, 757–785 (1988).

    Article  Google Scholar 

  • 66.

    Lyons, K. G., Brigham, C. A., Traut, B. H. & Schwartz, M. W. Rare species and ecosystem functioning. Conserv. Biol. 19, 1019–1024 (2005).

    Article  Google Scholar 

  • 67.

    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

  • 68.

    Jacob, U. et al. The role of body size in complex food webs. A cold case. Adv. Ecol. Res. 45, 181–223 (2011).

  • 69.

    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment

    Burrow emergence rhythms of Nephrops norvegicus by UWTV and surveying biases