in

An integrated life cycle and water footprint assessment of nonfood crops based bioenergy production

  • 1.

    Li, B. et al. The contribution of China’s emissions to global climate forcing. Nature 531, 357–361 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Yang, Q. et al. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China. J. Clean Prod. 205, 661–671 (2018).

    Article  Google Scholar 

  • 3.

    Amiri, S., Henning, D. & Karlsson, B. G. Simulation and introduction of a CHP plant in a Swedish biogas system. Renew. Energ. 49, 242–249 (2013).

    Article  Google Scholar 

  • 4.

    NDRC. National Development and Reform Committee of China, 2016. The “13th Five-year Plan” of Biomass Energy, Beijing (2016) [In Chinese].

  • 5.

    Serra, P., Giuntoli, J., Agostini, A., Colauzzi, M. & Amaducci, S. Coupling sorghum biomass and wheat straw to minimise the environmental impact of bioenergy production. J. Clean. Prod. 154, 242–254 (2017).

    CAS  Article  Google Scholar 

  • 6.

    Benoist, A., Dron, D. & Zoughaib, A. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels: A sensitivity analysis approach. Biomass. Bioenerg. 40, 133–142 (2012).

    CAS  Article  Google Scholar 

  • 7.

    Klimiuk, E., Pokoj, T., Budzynski, W. & Dubis, B. Theoretical and observed biogas production from plant biomass of different fibre contents. Biosour. Technol. 101, 9527–9535 (2010).

    CAS  Article  Google Scholar 

  • 8.

    Mela, G. & Canali, G. How distorting policies can affect energy efficiency and sustainability: the case of biogas production in the Po Valley. AgBio Forum 16, 194–206 (2014) ([In Chinese]).

    Google Scholar 

  • 9.

    International Energy Agency. World energy outlook 2011 (International Energy Agency, Paris, 2011).

    Google Scholar 

  • 10.

    Gerbens-Leenes, P. W., Hoekstra, A. Y. & van der Meer, T. The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 68, 1052–1060 (2009).

    Article  Google Scholar 

  • 11.

    Lijó, L. et al. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energ. 68, 625–635 (2014).

    Article  CAS  Google Scholar 

  • 12.

    Zheng, Y., Zhao, J., Xu, F. & Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energ Combust 42, 35–53 (2014).

    Article  Google Scholar 

  • 13.

    Cuellar, M. C. & Straathof, A. J. Biochemical conversion: biofuels by industrial fermentation. Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes. (Eds Wiley, J. et al.) 403 (New Jersey, USA. Press, 2015).

  • 14.

    Schittenhelm, S. Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur. J. Agron. 29, 72–79 (2008).

    CAS  Article  Google Scholar 

  • 15.

    Ertem, F. C., Neubauer, P. & Junne, S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. J. Clean. Prod. 140, 977–985 (2017).

    CAS  Article  Google Scholar 

  • 16.

    Rathor, D., Nizami, A.-S., Singh, A. & Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: Challenges and perspectives. Biofuel Res. J. 3, 380–393 (2016).

    Article  Google Scholar 

  • 17.

    Lemus, R. & Lal, R. Bioenergy Crops and Carbon Sequestration. Crit Rev Plant Sci 24, 1–21 (2005).

    CAS  Article  Google Scholar 

  • 18.

    Lewandowski, I., Scurlock, J. M. O., Lindvall, E. & Christou, M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg. 25, 335–361 (2003).

    Article  Google Scholar 

  • 19.

    Amon, T. et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Biosour Technol 98, 3204–3212 (2007).

    CAS  Article  Google Scholar 

  • 20.

    Igliński, B., Buczkowski, R. & Cichosz, M. Biogas production in Poland—Current state, potential and perspectives. Renew. Sust. Energ. Rev. 50, 686–695 (2015).

    Article  CAS  Google Scholar 

  • 21.

    Shete, M., Rutten, M., Schoneveld, G. C. & Zewude, E. Land-use changes by large-scale plantations and their effects on soil organic carbon, micronutrients and bulk density: empirical evidence from Ethiopia. Agr. Hum. Values 33, 689–704 (2015).

    Article  Google Scholar 

  • 22.

    He, P. & Li, D. Develop bio-energy on marginal land from the perspective of food security. Rural Econ. 51–53 (2011).

  • 23.

    Blengini, G. A., Brizio, E., Cibrario, M. & Genon, G. LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability. Resour. Conserv. Recycle 57, 36–47 (2011).

    Article  Google Scholar 

  • 24.

    Zhao, C., Chen, B. & Yang, J. Embodied water consumption of biogas–digestate utilization. Energy Proc. 61, 615–618 (2014).

    Article  Google Scholar 

  • 25.

    Pacetti, T., Lombardi, L. & Federici, G. Water–energy Nexus: a case of biogas production from energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA) methods. J. Clean. Prod. 101, 278–291 (2015).

    Article  Google Scholar 

  • 26.

    Chapagain, A. K. & Hoekstra, A. Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 70, 749–758 (2011).

    Article  Google Scholar 

  • 27.

    Lovarelli, D., Bacenetti, J. & Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 548–549, 236–251 (2016).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 28.

    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708 (2001).

    ADS  Article  Google Scholar 

  • 29.

    Yasar, A., Rasheed, R., Tabinda, A. B., Tahir, A. & Sarwar, F. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renew. Sust. Energ. Rev. 67, 364–371 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Xu, C., Shi, W., Hong, J., Zhang, F. & Chen, W. Life cycle assessment of food waste-based biogas generation. Renew. Sust. Energ. Rev. 49, 169–177 (2015).

    CAS  Article  Google Scholar 

  • 31.

    Van Stappen, F. et al. Consequential environmental life cycle assessment of a farm-scale biogas plant. J. Environ. Manag. 175, 20–32 (2016).

    Article  CAS  Google Scholar 

  • 32.

    Collet, P. et al. Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl. Energ. 192, 282–295 (2017).

    CAS  Article  Google Scholar 

  • 33.

    Chen, B. & Chen, S. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system. Energ Policy 62, 707–716 (2013).

    CAS  Article  Google Scholar 

  • 34.

    Torquati, B., Venanzi, S., Ciani, A., Diotallevi, F. & Tamburi, V. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability 6, 6696–6713 (2014).

    Article  Google Scholar 

  • 35.

    Boulay, A.-M., Hoekstra, A. Y. & Vionnet, S. Complementarities of water-focused life cycle assessment and water footprint assessment. Environ. Sci. Technol. 47, 11926–11927 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Jefferies, D. et al. Water footprint and life cycle assessment as approaches to assess potential impacts of products on water consumption. Key learning points from pilot studies on tea and margarine. J. Clean. Prod. 33, 155–166 (2012).

  • 37.

    Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S. & Ulgiati, S. Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies. Environments 5, 1–19 (2018).

    Article  Google Scholar 

  • 38.

    Ridoutt, B. G., Page, G., Opie, K., Huang, J. & Bellotti, W. Carbon, water and land use footprints of beef cattle production systems in southern Australia. J. Clean. Prod. 73, 24–30 (2014).

    Article  Google Scholar 

  • 39.

    Page, G., Ridoutt, B. & Bellotti, B. Carbon and water footprint tradeoffs in fresh tomato production. J. Clean. Prod. 32, 219–226 (2012).

    Article  Google Scholar 

  • 40.

    Hijazi, O., Munro, S., Zerhusen, B. & Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew Sust Energ Rev 54, 1291–1300 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Rooney, W. L., Blumenthal, J., Bean, B. & Mullet, J. E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels Biofuel Bioprod. Bior 1, 147–157 (2007).

    CAS  Article  Google Scholar 

  • 42.

    Fracasso, A., Trindade, L. & Amaducci, S. Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. J. Plant Physiol. 190, 1–14 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Duan, Q. Water footprint and Carbon balance in the cultivation, fermentation and energy utilization process of industrial biogas crops, Southwest University, (2017) (In Chinese).

  • 44.

    Fu, C., Dong, T. & Sun, Y. Selection of High Yield Energy Crops for marginal land and its biogas production potential. China Biogas 35, 72–76 (2017) ((In Chinese)).

    Google Scholar 

  • 45.

    Ming, Z., Shaojie, O., Hui, S., Yujian, G. & Qiqi, Q. Overall review of distributed energy development in China: Status quo, barriers and solutions. Renew. Sust. Energ. Rev. 50, 1226–1238 (2015).

    Article  Google Scholar 

  • 46.

    Lazarova, V., Choo, K.-H. & Cornel, P. Water-energy interactions in water reuse. (IWA, London, press, 2012).

  • 47.

    Holm-Nielsen, J. B., Al Seadi, T. & Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Biosour. Technol. 100, 5478–5484 (2009).

  • 48.

    Kristensen, P. G., Jensen, J. K., Nielsen, M. & Illerup, J. B. Emission factors for gas fired CHP units< 25 MW. (IGRC, 2004).

  • 49.

    Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories (Institute for Global Environmental Strategies Hayama, Japan, 2006).

    Google Scholar 

  • 50.

    Mekonnen, M. & Hoekstra, A. Y. National water footprint accounts: the green, blue and grey water footprint of production and consumption. (UNESCO-IHE Institute for Water Education, Netherlands, 2017).

  • 51.

    Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl. Acad. Sci. 106, 10219–10223 (2009).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Gai, L., Xie, G., Li, S., Zhang, C. & Chen, D. A study on production water footprint of winter wheat and maize in the North China Plain. Resour. Sci. 32, 2066–2071 (2010) ([In Chinese]).

    Google Scholar 

  • 53.

    Chapagain, A. K., Hoekstra, A. Y., Savenije, H. H. G. & Gautam, R. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 60, 186–203 (2006).

    Article  Google Scholar 

  • 54.

    Cao. et al. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Sci. Total Environ. 610, 84–93 (2018).

  • 55.

    Tian, J. 2013 Jinan effective utilization coefficient of irrigation water analysis and evaluation of estimates, Shandong University, (2014).

  • 56.

    Hoekstra, A. Y., Chapagain, A. K., Mekonnen, M. M. & Aldaya, M. M. The water footprint assessment manual: Setting the global standard. (Routledge, 2011).

  • 57.

    Wang, Z., Wu, Z. & Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43, 2504–2512 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Li, X., Yang, D. & Xia, F. Analysis of the water footprint of suburban planting in arid lands and determination of suitable farmland scale: a case study of Urumqi. Acta Ecol. Sin. 35, 2860–2869 (2015).

    Google Scholar 

  • 59.

    Su, M.-H., Huang, C.-H., Li, W.-Y., Tso, C.-T. & Lur, H.-S. Water footprint analysis of bioethanol energy crops in Taiwan. J Clean Prod 88, 132–138 (2015).

    Article  Google Scholar 

  • 60.

    60Gu, J. Study of water footprint of coal-based fuels with life cycle assessment, Shanghai Jiao Tong University, (2015) [In Chinses].

  • 61.

    European, C. State of play on the sustainability of solid and gaseous biomass used for electricity, heating and cooling in the EU-Commission staff working document (2014).

  • 62.

    Yu, C. Study on regional difference of profuction water footprint of main crop based on cropwat in Shandong Province Jinan: Shandong Normal University (2014) [In Chinese].

  • 63.

    Lijó, L., González-García, S., Bacenetti, J. & Moreira, M. T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 137, 1130–1143 (2017).

    Article  Google Scholar 

  • 64.

    Wang, Q. L., Li, W., Gao, X. & Li, S. J. Life cycle assessment on biogas production from straw and its sensitivity analysis. Biosour. Technol. 201, 208–214 (2016).

    CAS  Article  Google Scholar 

  • 65.

    Flesch, T. K., Desjardins, R. L. & Worth, D. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenerg. 35, 3927–3935 (2011).

    CAS  Article  Google Scholar 

  • 66.

    Li, J. Scenario analysis of tourism’s water footprint for China’s Beijing–Tianjin–Hebei region in 2020: implications for water policy. J. Sustain. Tour 26(1), 127–145 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Impacts of wildlife trade on terrestrial biodiversity

    Meet the research scientists behind MITEI’s Electric Power Systems Center