in

Areas of global importance for conserving terrestrial biodiversity, carbon and water

  • 1.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Butchart, S. H. M., Miloslavich, P., Reyers, B. & Subramanian, S. M. in IPBES Global Assessment on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T.) Ch. 3 (IPBES, 2019).

  • 4.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/meetings/WG2020-03

  • 6.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Greve, M., Reyers, B., Mette Lykke, A. & Svenning, J.-C. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nat. Commun. 4, 2975 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Allan, J. R. et al. Conservation attention necessary across at least 44% of Earth’s terrestrial area to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2019).

  • 15.

    Fastre, S., Mogg, C., Jung, M. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).

  • 16.

    Rinnan, D. S. & Jetz, W. Terrestrial conservation opportunities and inequities revealed by global multi-scale prioritization. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).

  • 17.

    Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).

    Article 

    Google Scholar 

  • 18.

    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    McInnes, L. et al. Do global diversity patterns of vertebrates reflect those of monocots? PLoS ONE 8, e56979 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Daru, B. H. et al. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).

    Article 

    Google Scholar 

  • 22.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).

    Article 

    Google Scholar 

  • 25.

    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton, 2016).

  • 26.

    Laffoley, D. et al. An introduction to ‘other effective area-based conservation measures’ under Aichi Target 11 of the Convention on Biological Diversity: origin, interpretation and emerging ocean issues. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 130–137 (2017).

    Article 

    Google Scholar 

  • 27.

    IUCN Red List Categories and Criteria Version 3.1 (IUCN, 2012).

  • 28.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1368 (2009).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).

    Article 

    Google Scholar 

  • 31.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Woodley, S. et al. A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25, 31–46 (2019).

    Article 

    Google Scholar 

  • 33.

    Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Chauvenet, A. L. M., Kuempel, C. D., McGowan, J., Beger, M. & Possingham, H. P. Methods for calculating Protection Equality for conservation planning. PLoS ONE 12, e0171591 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 43.

    World Checklist of Vascular Plants (WCVP, 2020); http://wcvp.science.kew.org/

  • 44.

    The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019); www.iucnredlist.org

  • 45.

    Bird Species Distribution Maps of the World Version 2019.1 (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis

  • 46.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical informationnetwork to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615 (2016).

  • 48.

    Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Article 

    Google Scholar 

  • 49.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).

    Article 

    Google Scholar 

  • 50.

    Forest Inventory and Analysis National Program (US Forest Service, 2013); www.fia.fs.fed.us/

  • 51.

    Peet, R., Lee, M., Jennings, M. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodivers. Ecol. 4, 233–241 (2012).

    Article 

    Google Scholar 

  • 52.

    Boyle, B. & Enquist, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. https://doi.org/10.7809/b-e.00086 (2012).

  • 53.

    Wiser, S., Bellingham, P. & Burrows, L. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).

    Google Scholar 

  • 54.

    DeWalt, S. J., Bourdy, G., ChÁvez de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).

    Article 

    Google Scholar 

  • 55.

    Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2001).

    Google Scholar 

  • 56.

    Fegraus, E. Tropical ecology assessment and monitoring network (TEAM Network). Biodivers. Ecol. 4, 287–287 (2012).

    Article 

    Google Scholar 

  • 57.

    Oliveira-Filho, A. T. in Fitossociologia no Brasil—Métodos e Estudos de Caso Vol. 2 (eds. Eisenlohr, P. V. et al.) Ch. 19 (Editora UFV, 2015).

  • 58.

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • 59.

    Rondinini, C., Stuart, S. & Boitani, L. Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conserv. Biol. 19, 1488–1497 (2005).

    Article 

    Google Scholar 

  • 60.

    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Habitats Classification Scheme Version 3.1 (IUCN, 2012).

  • 63.

    Lesiv, M. et al. Global planted trees extent 2015. Zenodo https://doi.org/10.5281/zenodo.3931930 (2020).

  • 64.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 

    Google Scholar 

  • 65.

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (International Working Group on Taxonomic Databases for Plant Sciences, 2001).

  • 67.

    Santoro, M. GlobBiomass—Global Datasets of Forest Biomass (PANGAEA, 2018); https://doi.org/10.1594/PANGAEA.894711

  • 68.

    Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e4084

  • 69.

    Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).

    Article 

    Google Scholar 

  • 70.

    Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).

    Article 

    Google Scholar 

  • 71.

    Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).

    Article 

    Google Scholar 

  • 72.

    Spawn, S. A., Lark, T., & Gibbs, H. New Global Biomass Map for the Year 2010 (American Geophysical Union, 2017).

  • 73.

    Schepaschenko, D. et al. Improved estimates of biomass expansion factors for Russian forests. Forests 9, 312 (2018).

    Article 

    Google Scholar 

  • 74.

    Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (IPCC, 2006).

  • 75.

    Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).

  • 76.

    Hengl, T. & Nauman, T. Predicted USDA soil orders at 250 m (probabilities) (version v0.1). Zenodo https://doi.org/10.5281/zenodo.2658183 (2019).

  • 77.

    Mulligan, M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 44, 748–769 (2013).

    Article 

    Google Scholar 

  • 78.

    Mulligan, M. in The Impacts of Climate Change on Water Resources in Agriculture (eds Zolin, A. C. & Rodrigues, R. A. R.) 184–204 (CRC, 2014).

  • 79.

    van Soesbergen, A. & Mulligan, M. Potential outcomes of multi-variable climate change on water resources in the Santa Basin, Peru. Int. J. Water Res. Dev. 34, 150–165 (2018).

    Article 

    Google Scholar 

  • 80.

    Van Soesbergen, A. & Mulligan, M. Uncertainty in data for hydrological ecosystem services modelling: potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 33, 175–186 (2018).

    Article 

    Google Scholar 

  • 81.

    Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation? Biol. Conserv. 143, 439–448 (2010).

    Article 

    Google Scholar 

  • 84.

    Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61–76 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011).

    Article 

    Google Scholar 

  • 86.

    McCreless, E., Visconti, P., Carwardine, J., Wilcox, C. & Smith, R. J. Cheap and nasty? The potential perils of using management costs to identify global conservation priorities. PLoS ONE 8, e80893 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 87.

    Carwardine, J. et al. Cost-effective priorities for global mammal conservation. Proc. Natl Acad. Sci. USA 105, 11446–11450 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Arponen, A., Heikkinen, R., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005).

    Article 

    Google Scholar 

  • 90.

    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Model. 328, 14–22 (2016).

    Article 

    Google Scholar 

  • 91.

    Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).

    Article 

    Google Scholar 

  • 92.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  • 93.

    Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. (2020); https://CRAN.R-project.org/package=prioritizr

  • 94.

    Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019).


  • Source: Ecology - nature.com

    Countering climate change with cool pavements

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages