in

Behavioral state resource selection in invasive wild pigs in the Southeastern United States

  • 1.

    Wiens, J. A., Stenseth, N. C., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).

    Article 

    Google Scholar 

  • 2.

    Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Roever, C. L., Beyer, H. L., Chase, M. J. & van Aarde, R. J. The pitfalls of ignoring behaviour when quantifying habitat selection. Divers. Distrib. 20, 322–333 (2014).

    Article 

    Google Scholar 

  • 4.

    Moorcroft, P. R., Moorcroft, P. & Lewis, M. A. Mechanistic Home Range Analysis (Princeton University Press, 2006).

    Google Scholar 

  • 5.

    Boerger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).

    Article 

    Google Scholar 

  • 6.

    Forester, J. D. et al. State-Space Models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr. 77, 285–299 (2007).

    Article 

    Google Scholar 

  • 7.

    Northrup, J. M., Anderson, C. R., Hooten, M. B. & Wittemyer, G. Movement reveals scale dependence in habitat selection of a large ungulate. Ecol. Appl. 26, 2746–2757 (2016).

    Article 

    Google Scholar 

  • 8.

    Northrup, J. M., Anderson, C. R. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).

    Article 

    Google Scholar 

  • 9.

    Beyer, H. L. et al. The interpretation of habitat preference metrics under use—availability designs. Philos. Trans. R. Soc. B Biol. Sci. 365, 2245–2254 (2010).

    Article 

    Google Scholar 

  • 10.

    Patterson, T. A., Basson, M., Bravington, M. V. & Gunn, J. S. Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J. Anim. Ecol. 78, 1113–1123 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Franke, A., Caelli, T. & Hudson, R. J. Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden Markov models. Ecol. Model. 173, 259–270 (2004).

    Article 

    Google Scholar 

  • 12.

    Michelot, T., Langrock, R., Patterson, T. moveHMM: An R package for the analysis of animal movement data. 20 (2016).

  • 13.

    Leos-Barajas, V. et al. Multi-scale modeling of animal movement and general behavior data using hidden markov models with hierarchical structures. JABES 22, 232–248 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 14.

    Schick, R. S. et al. Understanding movement data and movement processes: Current and emerging directions. Ecol. Lett. 11, 1338–1350 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Zucchini, W., MacDonald, I. L., Langrock, R., MacDonald, I. L. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn. (Chapman and Hall/CRC, 2016).

    Google Scholar 

  • 16.

    Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).

    Article 

    Google Scholar 

  • 17.

    VerCauteren, K.C., Mayer, J.J., Beasley, J.C., Ditchkoff, S.S., Roloff, G.J., Strickland, B.K. Introduction, invasive wild pigs in North America: Ecology, impacts, and management. 1–5 (2020).

  • 18.

    Barrios-Garcia, M. & Ballari, S. Impact of wild boar (sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).

    Article 

    Google Scholar 

  • 19.

    Gray, S. M., Roloff, G. J., Montgomery, R. A., Beasley, J. C. & Pepin, K. M. Wild Pig Spatial Ecology and Behavior, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 33–56 (CRC Press, 2020).

    Google Scholar 

  • 20.

    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Fortin, D. et al. Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005).

    Article 

    Google Scholar 

  • 22.

    Forester, J. D., Im, H. K. & Rathouz, P. J. Accounting for animal movement in estimation of resource selection functions: Sampling and data analysis. Ecology 90, 3554–3565 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Wilber, M. Q. et al. Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests. Ecol. Appl. 30, e02015 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Hanson, R. P. & Karstad, L. Feral swine in the southeastern United States. J. Wildl. Manag. 23, 64 (1959).

    Article 

    Google Scholar 

  • 25.

    Oliveira-Santos, L. G. R., Forester, J. D., Piovezan, U., Tomas, W. M. & Fernandez, F. A. S. Incorporating animal spatial memory in step selection functions. J. Anim. Ecol. 85, 516–524 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Mayer, J.J. Wild pig behavior, wild pigs: Biology, damage, control techniques and management. 408 (2009).

  • 27.

    Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).

    Article 

    Google Scholar 

  • 28.

    Comer, C.E., Mayer, J.J. Wild pigs: Biology, damage, control techniques and management. 408 (2009).

  • 29.

    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of european wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).

    Article 

    Google Scholar 

  • 30.

    Gaston, W., Armstrong, J., Arjo, W., Stribling, H.L. Home range and habitat use of feral hogs (Sus scrofa) on Lowndes County WMA, Alabama. In National Conference on Feral Hogs (2008).

  • 31.

    Mayer, J.J., Beasley, J.C., Boughton, R., Ditchkoff, S.S. Wild Pigs in the southeast, Invasive Wild Pigs in North America: Ecology, Impacts, and Management (2020).

  • 32.

    Beasley, J. C., Grazia, T. E., Johns, P. E. & Mayer, J. J. Habitats associated with vehicle collisions with wild pigs. wilr 40, 654–660 (2014).

    Google Scholar 

  • 33.

    Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 9446 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 34.

    White, D.L. & Gaines, K.F. The savannah river site: Site description, land use and management history. 8–17 (2000).

  • 35.

    Ellis, C. K. et al. Comparison of the efficacy of four drug combinations for immobilization of wild pigs. Eur. J. Wildl. Res. 65, 78 (2019).

    Article 

    Google Scholar 

  • 36.

    Mayer, J.J., Smyser, T.J., Piaggio, A.J., & Zervanos, S.M. Wild pig taxonomy, morphology, genetics, and physiology, Invasive Wild Pigs in North America: Ecology, Impacts, and Management. 7–32 (2020).

  • 37.

    Pohle, J., Langrock, R., van Beest, F. M. & Schmidt, N. M. Selecting the number of states in hidden markov models: Pragmatic solutions illustrated using animal movement. JABES 22, 270–293 (2017).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 38.

    Kay, S.L., Fischer, J.W., Monaghan, A.J., Beasley, J.C., Boughton, R., Campbell, T.A., et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5 (2017).

  • 39.

    Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L.. Eur. J. Wildl. Res. 54, 403–412 (2009).

    Article 

    Google Scholar 

  • 40.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second (Springer, 2002).

    Google Scholar 

  • 41.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2019).

  • 42.

    Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2–32 (2019).

    Google Scholar 

  • 43.

    Conner, L. M., Smith, M. D. & Burger, L. W. A comparison of distance-based and classification-base analyses of habitat use. Ecology 84, 526–531 (2003).

    Article 

    Google Scholar 

  • 44.

    Benson, J. F. Improving rigour and efficiency of use-availability habitat selection analyses with systematic estimation of availability. Methods Ecol. Evol. 4, 244–251 (2013).

    Article 

    Google Scholar 

  • 45.

    Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • 46.

    Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L. & Boyce, M. S. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. J. Wildl. Manag. 70, 347–357 (2006).

    Article 

    Google Scholar 

  • 47.

    Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection Functions from Logistic Regression, Resource Selection by Animals: Statistical Analysis and Design for Field Studies 83–110 (Kluwer Academic Publishers, 2002).

    Google Scholar 

  • 48.

    Kohl, M. T., Krausman, P. R., Kunkel, K. & Williams, D. M. Bison versus cattle: Are they ecologically synonymous?. Rangeland Ecol. Manag. 66, 721–731 (2013).

    Article 

    Google Scholar 

  • 49.

    Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. arrXiv:14065823 [stat] (2014).

  • 50.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).

    Article 

    Google Scholar 

  • 51.

    Zipkin, E. F., Grant, E. H. C. & Fagan, W. F. Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol. Appl. 22, 1962–1972 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Latif, Q. S., Saab, V. A., Dudley, J. G., Markus, A. & Mellen-McLean, K. Development and evaluation of habitat suitability models for nesting white-headed woodpecker (Dryobates albolarvatus) in burned forest. PLoS ONE 15, e0233043 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).

    Article 

    Google Scholar 

  • 54.

    Gillies, C. S. et al. Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 75, 887–898 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Karelus, D. L. et al. Incorporating movement patterns to discern habitat selection: Black bears as a case study. wilr 46, 76–88 (2019).

    Google Scholar 

  • 56.

    Franke, A., Caelli, T., Kuzyk, G. & Hudson, R. J. Prediction of wolf (Canis lupus) kill-sites using hidden Markov models. Ecol. Model. 197, 237–246 (2006).

    Article 

    Google Scholar 

  • 57.

    van de Kerk, M. et al. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther. J. Anim. Ecol. 84, 576–585 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Blasetti, A., Boitani, L., Riviello, M. C. & Visalberghi, E. Activity budgets and use of enclosed space by wild boars (Sus scrofa) in captivity. Zoo Biol. 7, 69–79 (1988).

    Article 

    Google Scholar 

  • 59.

    Campbell, T. A. & Long, D. B. Activity patterns of wild boars (Sus scrofa) in southern Texas. Southwestern Nat. 55, 564–567 (2010).

    Article 

    Google Scholar 

  • 60.

    Ilse LM and Hellgren EC, Resource Partitioning in Sympatric Populations of Collared Peccaries and Feral Hogs in Southern Texas, Journal of Mammalogy 76:784–799.

  • 61.

    Snow, N. P., Miller, R. S., Beasley, J. C. & Pepin, K. M. Wild Pig Population Dynamics, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 57–82 (CRC Press, 2020).

    Google Scholar 

  • 62.

    Matiuti, M., Bogdan, A.T., Crainiceanu, E., Matiuti, C. Research regarding the hybrids resulted from the domestic pig and the wild boar. Sci. Pap. 4 (2010).

  • 63.

    Ditmer, M. A. et al. Moose at their bioclimatic edge alter their behavior based on weather, landscape, and predators. Curr. Zool. 64, 419–432 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Dexter, N. The influence of pasture distribution and temperature on habitat selection by feral pigs in a semi-arid environment. Wildl. Res. 25, 547–559 (1998).

    Article 

    Google Scholar 

  • 65.

    Abrahms, B. et al. Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads. Anim. Conserv. 19, 247–255 (2016).

    Article 

    Google Scholar 

  • 66.

    Ditchkoff, S. S. & Mayer, J. J. Wild Pig Food Habits, Wild Pigs: Biology, Damage, Control Techniques and Management 105–143 (Savannah River Nuclear Solutions LLC, 2009).

    Google Scholar 

  • 67.

    Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev. 44, 124–134 (2014).

    Article 

    Google Scholar 

  • 68.

    Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild Pig Populations Along the Urban Gradient, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 439–464 (CRC Press, 2020).

    Google Scholar 

  • 69.

    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal 94, 109–119 (2013).

    Article 

    Google Scholar 

  • 70.

    Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Cons. 133, 88–94 (2006).

    Article 

    Google Scholar 

  • 72.

    Thurfjell, H. et al. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur. J. Wildl. Res. 55, 517–523 (2009).

    Article 

    Google Scholar 

  • 73.

    Senior, A. M., Grueber, C. E., Machovsky-Capuska, G., Simpson, S. J. & Raubenheimer, D. Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mammal. Biol. 81, 523–526 (2016).

    Article 

    Google Scholar 

  • 74.

    Lyons, P. C., Okuda, K., Hamilton, M. T., Hinton, T. G. & Beasley, J. C. Rewilding of Fukushima’s human evacuation zone. Front. Ecol. Environ. 18, 127–134 (2020).

    Article 

    Google Scholar 

  • 75.

    Graves, H. B. Behavior and ecology of wild and feral swine (Sus Scrofa). J. Anim. Sci. 58, 482–492 (1984).

    Article 

    Google Scholar 

  • 76.

    Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus Scrofa) in the Camargue, Southern France. Behav. Proc. 13, 251–268 (1986).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Meriggi, A. & Sacchi, O. Habitat requirements of wild boars in the northern Apennines (N Italy): A multi-level approach. Ital. J. Zool. 68, 47–55 (2001).

    Article 

    Google Scholar 

  • 78.

    Pepin, K. M., Snow, N. P. & VerCauteren, K. C. Optimal bait density for delivery of acute toxicants to vertebrate pests. J. Pest. Sci. 93, 723–735 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water