Wiens, J. A., Stenseth, N. C., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).
Google Scholar
Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).
Google Scholar
Roever, C. L., Beyer, H. L., Chase, M. J. & van Aarde, R. J. The pitfalls of ignoring behaviour when quantifying habitat selection. Divers. Distrib. 20, 322–333 (2014).
Google Scholar
Moorcroft, P. R., Moorcroft, P. & Lewis, M. A. Mechanistic Home Range Analysis (Princeton University Press, 2006).
Boerger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).
Google Scholar
Forester, J. D. et al. State-Space Models link elk movement patterns to landscape characteristics in Yellowstone National Park. Ecol. Monogr. 77, 285–299 (2007).
Google Scholar
Northrup, J. M., Anderson, C. R., Hooten, M. B. & Wittemyer, G. Movement reveals scale dependence in habitat selection of a large ungulate. Ecol. Appl. 26, 2746–2757 (2016).
Google Scholar
Northrup, J. M., Anderson, C. R. & Wittemyer, G. Environmental dynamics and anthropogenic development alter philopatry and space-use in a North American cervid. Divers. Distrib. 22, 547–557 (2016).
Google Scholar
Beyer, H. L. et al. The interpretation of habitat preference metrics under use—availability designs. Philos. Trans. R. Soc. B Biol. Sci. 365, 2245–2254 (2010).
Google Scholar
Patterson, T. A., Basson, M., Bravington, M. V. & Gunn, J. S. Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J. Anim. Ecol. 78, 1113–1123 (2009).
Google Scholar
Franke, A., Caelli, T. & Hudson, R. J. Analysis of movements and behavior of caribou (Rangifer tarandus) using hidden Markov models. Ecol. Model. 173, 259–270 (2004).
Google Scholar
Michelot, T., Langrock, R., Patterson, T. moveHMM: An R package for the analysis of animal movement data. 20 (2016).
Leos-Barajas, V. et al. Multi-scale modeling of animal movement and general behavior data using hidden markov models with hierarchical structures. JABES 22, 232–248 (2017).
Google Scholar
Schick, R. S. et al. Understanding movement data and movement processes: Current and emerging directions. Ecol. Lett. 11, 1338–1350 (2008).
Google Scholar
Zucchini, W., MacDonald, I. L., Langrock, R., MacDonald, I. L. & Langrock, R. Hidden Markov Models for Time Series: An Introduction Using R 2nd edn. (Chapman and Hall/CRC, 2016).
Beasley, J. C., Ditchkoff, S. S., Mayer, J. J., Smith, M. D. & Vercauteren, K. C. Research priorities for managing invasive wild pigs in North America. J. Wildl. Manag. 82, 674–681 (2018).
Google Scholar
VerCauteren, K.C., Mayer, J.J., Beasley, J.C., Ditchkoff, S.S., Roloff, G.J., Strickland, B.K. Introduction, invasive wild pigs in North America: Ecology, impacts, and management. 1–5 (2020).
Barrios-Garcia, M. & Ballari, S. Impact of wild boar (sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).
Google Scholar
Gray, S. M., Roloff, G. J., Montgomery, R. A., Beasley, J. C. & Pepin, K. M. Wild Pig Spatial Ecology and Behavior, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 33–56 (CRC Press, 2020).
Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).
Google Scholar
Fortin, D. et al. Wolves influence elk movements: Behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330 (2005).
Google Scholar
Forester, J. D., Im, H. K. & Rathouz, P. J. Accounting for animal movement in estimation of resource selection functions: Sampling and data analysis. Ecology 90, 3554–3565 (2009).
Google Scholar
Wilber, M. Q. et al. Predicting functional responses in agro-ecosystems from animal movement data to improve management of invasive pests. Ecol. Appl. 30, e02015 (2020).
Google Scholar
Hanson, R. P. & Karstad, L. Feral swine in the southeastern United States. J. Wildl. Manag. 23, 64 (1959).
Google Scholar
Oliveira-Santos, L. G. R., Forester, J. D., Piovezan, U., Tomas, W. M. & Fernandez, F. A. S. Incorporating animal spatial memory in step selection functions. J. Anim. Ecol. 85, 516–524 (2016).
Google Scholar
Mayer, J.J. Wild pig behavior, wild pigs: Biology, damage, control techniques and management. 408 (2009).
Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).
Google Scholar
Comer, C.E., Mayer, J.J. Wild pigs: Biology, damage, control techniques and management. 408 (2009).
Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of european wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
Google Scholar
Gaston, W., Armstrong, J., Arjo, W., Stribling, H.L. Home range and habitat use of feral hogs (Sus scrofa) on Lowndes County WMA, Alabama. In National Conference on Feral Hogs (2008).
Mayer, J.J., Beasley, J.C., Boughton, R., Ditchkoff, S.S. Wild Pigs in the southeast, Invasive Wild Pigs in North America: Ecology, Impacts, and Management (2020).
Beasley, J. C., Grazia, T. E., Johns, P. E. & Mayer, J. J. Habitats associated with vehicle collisions with wild pigs. wilr 40, 654–660 (2014).
Keiter, D. A. et al. Effects of scale of movement, detection probability, and true population density on common methods of estimating population density. Sci. Rep. 7, 9446 (2017).
Google Scholar
White, D.L. & Gaines, K.F. The savannah river site: Site description, land use and management history. 8–17 (2000).
Ellis, C. K. et al. Comparison of the efficacy of four drug combinations for immobilization of wild pigs. Eur. J. Wildl. Res. 65, 78 (2019).
Google Scholar
Mayer, J.J., Smyser, T.J., Piaggio, A.J., & Zervanos, S.M. Wild pig taxonomy, morphology, genetics, and physiology, Invasive Wild Pigs in North America: Ecology, Impacts, and Management. 7–32 (2020).
Pohle, J., Langrock, R., van Beest, F. M. & Schmidt, N. M. Selecting the number of states in hidden markov models: Pragmatic solutions illustrated using animal movement. JABES 22, 270–293 (2017).
Google Scholar
Kay, S.L., Fischer, J.W., Monaghan, A.J., Beasley, J.C., Boughton, R., Campbell, T.A., et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5 (2017).
Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L.. Eur. J. Wildl. Res. 54, 403–412 (2009).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, Second (Springer, 2002).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2019).
Jin, S. et al. Overall methodology design for the United States national land cover database 2016 products. Remote Sens. 11, 2–32 (2019).
Conner, L. M., Smith, M. D. & Burger, L. W. A comparison of distance-based and classification-base analyses of habitat use. Ecology 84, 526–531 (2003).
Google Scholar
Benson, J. F. Improving rigour and efficiency of use-availability habitat selection analyses with systematic estimation of availability. Methods Ecol. Evol. 4, 244–251 (2013).
Google Scholar
Calenge, C. The package adehabitat for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).
Google Scholar
Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L. & Boyce, M. S. Resource selection functions based on use-availability data: Theoretical motivation and evaluation methods. J. Wildl. Manag. 70, 347–357 (2006).
Google Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection Functions from Logistic Regression, Resource Selection by Animals: Statistical Analysis and Design for Field Studies 83–110 (Kluwer Academic Publishers, 2002).
Kohl, M. T., Krausman, P. R., Kunkel, K. & Williams, D. M. Bison versus cattle: Are they ecologically synonymous?. Rangeland Ecol. Manag. 66, 721–731 (2013).
Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. Fitting linear mixed-effects models using lme4. arrXiv:14065823 [stat] (2014).
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Google Scholar
Zipkin, E. F., Grant, E. H. C. & Fagan, W. F. Evaluating the predictive abilities of community occupancy models using AUC while accounting for imperfect detection. Ecol. Appl. 22, 1962–1972 (2012).
Google Scholar
Latif, Q. S., Saab, V. A., Dudley, J. G., Markus, A. & Mellen-McLean, K. Development and evaluation of habitat suitability models for nesting white-headed woodpecker (Dryobates albolarvatus) in burned forest. PLoS ONE 15, e0233043 (2020).
Google Scholar
Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
Google Scholar
Gillies, C. S. et al. Application of random effects to the study of resource selection by animals. J. Anim. Ecol. 75, 887–898 (2006).
Google Scholar
Karelus, D. L. et al. Incorporating movement patterns to discern habitat selection: Black bears as a case study. wilr 46, 76–88 (2019).
Franke, A., Caelli, T., Kuzyk, G. & Hudson, R. J. Prediction of wolf (Canis lupus) kill-sites using hidden Markov models. Ecol. Model. 197, 237–246 (2006).
Google Scholar
van de Kerk, M. et al. Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther. J. Anim. Ecol. 84, 576–585 (2015).
Google Scholar
Blasetti, A., Boitani, L., Riviello, M. C. & Visalberghi, E. Activity budgets and use of enclosed space by wild boars (Sus scrofa) in captivity. Zoo Biol. 7, 69–79 (1988).
Google Scholar
Campbell, T. A. & Long, D. B. Activity patterns of wild boars (Sus scrofa) in southern Texas. Southwestern Nat. 55, 564–567 (2010).
Google Scholar
Ilse LM and Hellgren EC, Resource Partitioning in Sympatric Populations of Collared Peccaries and Feral Hogs in Southern Texas, Journal of Mammalogy 76:784–799.
Snow, N. P., Miller, R. S., Beasley, J. C. & Pepin, K. M. Wild Pig Population Dynamics, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 57–82 (CRC Press, 2020).
Matiuti, M., Bogdan, A.T., Crainiceanu, E., Matiuti, C. Research regarding the hybrids resulted from the domestic pig and the wild boar. Sci. Pap. 4 (2010).
Ditmer, M. A. et al. Moose at their bioclimatic edge alter their behavior based on weather, landscape, and predators. Curr. Zool. 64, 419–432 (2018).
Google Scholar
Dexter, N. The influence of pasture distribution and temperature on habitat selection by feral pigs in a semi-arid environment. Wildl. Res. 25, 547–559 (1998).
Google Scholar
Abrahms, B. et al. Lessons from integrating behaviour and resource selection: activity-specific responses of African wild dogs to roads. Anim. Conserv. 19, 247–255 (2016).
Google Scholar
Ditchkoff, S. S. & Mayer, J. J. Wild Pig Food Habits, Wild Pigs: Biology, Damage, Control Techniques and Management 105–143 (Savannah River Nuclear Solutions LLC, 2009).
Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev. 44, 124–134 (2014).
Google Scholar
Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild Pig Populations Along the Urban Gradient, Invasive Wild Pigs in North America: Ecology, Impacts, and Management 439–464 (CRC Press, 2020).
Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal 94, 109–119 (2013).
Google Scholar
Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).
Google Scholar
Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Cons. 133, 88–94 (2006).
Google Scholar
Thurfjell, H. et al. Habitat use and spatial patterns of wild boar Sus scrofa (L.): agricultural fields and edges. Eur. J. Wildl. Res. 55, 517–523 (2009).
Google Scholar
Senior, A. M., Grueber, C. E., Machovsky-Capuska, G., Simpson, S. J. & Raubenheimer, D. Macronutritional consequences of food generalism in an invasive mammal, the wild boar. Mammal. Biol. 81, 523–526 (2016).
Google Scholar
Lyons, P. C., Okuda, K., Hamilton, M. T., Hinton, T. G. & Beasley, J. C. Rewilding of Fukushima’s human evacuation zone. Front. Ecol. Environ. 18, 127–134 (2020).
Google Scholar
Graves, H. B. Behavior and ecology of wild and feral swine (Sus Scrofa). J. Anim. Sci. 58, 482–492 (1984).
Google Scholar
Dardaillon, M. Seasonal variations in habitat selection and spatial distribution of wild boar (Sus Scrofa) in the Camargue, Southern France. Behav. Proc. 13, 251–268 (1986).
Google Scholar
Meriggi, A. & Sacchi, O. Habitat requirements of wild boars in the northern Apennines (N Italy): A multi-level approach. Ital. J. Zool. 68, 47–55 (2001).
Google Scholar
Pepin, K. M., Snow, N. P. & VerCauteren, K. C. Optimal bait density for delivery of acute toxicants to vertebrate pests. J. Pest. Sci. 93, 723–735 (2020).
Google Scholar
Source: Ecology - nature.com