in

Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency

  • 1.

    Chen, J., Sun, S., Li, C. Z., Zhu, Y. G. & Rosen, B. P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 48, 1141 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Ghosh, N. & Singh, R. Groundwater Arsenic Contamination in India: Vulnerability and Scope for Remedy (National Institute of Hydrology, 2009).

    Google Scholar 

  • 3.

    Luong, J. H. T., Lam, E. & Male, K. B. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 121, 295 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Ahmad, S. A., Khan, M. H. & Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare Policy 11, 251 (2018).

    Article 

    Google Scholar 

  • 6.

    Sultana, M. et al. Investigation of arsenotrophic microbiome in arsenic-affected Bangladesh groundwater. Groundwater 55, 736 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Shakoor, M. B. et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Natasha, et al. Arsenic environmental contamination status in South Asia. Arsenic Drink. Water Food. https://doi.org/10.1007/978-981-13-8587-2_2 (2020).

    Article 

    Google Scholar 

  • 9.

    Choudhury, M. I. M. et al. Cutaneous malignancy due to arsenicosis in Bangladesh: 12-year study in tertiary level hospital. Biomed. Res. Int. 2018, 4678362 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Arsenic—Banglapedia. https://en.banglapedia.org/index.php/Arsenic. (Accessed 28 June 2021)

  • 11.

    Arsenic Contamination in Water: No proper study done in years|The Daily Star. https://www.thedailystar.net/backpage/news/arsenic-contamination-water-no-proper-study-done-years-2064585. (Accessed 19 June 2021)

  • 12.

    Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L. & Lam, W. L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 431287 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 376, 252 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Mujawar, S. Y., Shamim, K., Vaigankar, D. C. & Dubey, S. K. Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 32, 65 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Masscheleyn, P. H., Delaune, R. D. & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Jain, C. K. & Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 34, 4304 (2000).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Garelick, H., Dybowska, A., Valsami-Jones, E. & Priest, N. D. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 5, 182 (2005).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kruger, M. C., Bertin, P. N., Heipieper, H. J. & Arsène-Ploetze, F. Bacterial metabolism of environmental arsenic—Mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 97, 3827 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 19.

    Rahman, A. et al. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health A 49, 1349 (2014).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Halttunen, T., Finell, M. & Salminen, S. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 120, 173 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Mondal, P., Majumder, C. B. & Mohanty, B. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic Microbiol. 48, 521 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health A 46, 1736 (2011).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Bahar, M. M., Megharaj, M. & Naidu, R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23, 803 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Lozano, L. C. & Dussán, J. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 29, 1383 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Corsini, A. et al. Characterization of As(III) oxidizing Achromobacter sp. strain N2: Effects on arsenic toxicity and translocation in rice. Ann. Microbiol. 68, 295 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Istiaq, A. et al. Adaptation of metal and antibiotic resistant traits in novel β-Proteobacterium Achromobacter xylosoxidans BHW-15. PeerJ 2019, e6537 (2019).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Hamamura, N. et al. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 6, 476 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Ehrlich, H. L., Newman, D. K. & Kappler, A. Geomicrobiology (CRC Press, 2008).

    Book 

    Google Scholar 

  • 29.

    Bahar, M. M., Megharaj, M. & Naidu, R. Bioremediation of arsenic-contaminated water: Recent advances and future prospects. Water Air Soil Pollut. 224, 1–20 (2013).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Hamamura, N. et al. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ. Microbiol. 11, 421 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Hamamura, N. Distribution of aerobic arsenite oxidase genes within the aquificales. In Tokyo: TERRAPUB, 47–55 (2010).

  • 32.

    Andreoni, V. et al. Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: Detection of genes involved in arsenite oxidation and CO2 fixation. Curr. Microbiol. 65, 212 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Lett, M. C., Muller, D., Lièvremont, D., Silver, S. & Santini, J. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J. Bacteriol. 194, 207 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Engel, A. S., Johnson, L. R. & Porter, M. L. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser field, Chile. FEMS Microbiol. Ecol. 83, 745 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Drewniak, L. & Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 20, 7728 (2013).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Jiang, Z. et al. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles 18, 161 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Wu, G. et al. Distribution of arsenite-oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan-Yunnan geothermal zone in western China. Geomicrobiol. J. 32, 482 (2015).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Hernandez-Maldonado, J. et al. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environ. Microbiol. 19, 130 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Rahman, M. M., Hussain, M. M. & Asiri, A. M. A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 6, 65338 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Rahman, M. M., Hussain, M. M. & Asiri, A. M. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS ONE 12, e0177817 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Hussain, M. M., Rahman, M. M. & Asiri, A. M. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (China) 53, 27 (2017).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Pous, N. et al. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. J. Hazard. Mater. 283, 617 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Watanabe, T., Kojima, H. & Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: Genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 37, 387 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Mandal, B. Arsenic round the world: A review. Talanta 58, 201 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Mukhopadhyay, R., Rosen, B. P., Phung, L. T. & Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Purakayastha, T. J. Detoxification of Heavy Metals (Springer, 2011).

    Google Scholar 

  • 49.

    Silver, S. & Phung, L. T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Agarwal, M., Rathore, R. S. & Chauhan, A. A rapid and high throughput MIC determination method to screen uranium resistant microorganisms. Methods Protoc. 3(1), 21. https://doi.org/10.3390/mps3010021 (2020).

    CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 51.

    Johnson, D. B., Okibe, N. & Roberto, F. F. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: Physiological and phylogenetic characteristics. Arch. Microbiol. 180, 60 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Cai, L., Liu, G., Rensing, C. & Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9, 1–11 (2009).

    Article 
    CAS 

    Google Scholar 

  • 53.

    Achour, A. R., Bauda, P. & Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158, 128 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Cervantes, C., Ji, G., Ramirez, J. & Silver, S. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Majumder, A., Ghosh, S., Saha, N., Kole, S. C. & Sarkar, S. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J. Environ. Biol. 34, 841 (2013).

    PubMed 

    Google Scholar 

  • 56.

    Takeuchi, M. et al. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127, 434 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic Microbiol. 55, 1275 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Zolgharnein, H., Karami, K., Assadi, M. M. & Sohrab, A. D. Molecular characterization and phylogenetic analyses of heavy metal removal bacteria from the Persian gulf. Biotechnology 9, 1–8 (2010).

    CAS 

    Google Scholar 

  • 60.

    Valenzuela, C. et al. Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application. Bull. Environ. Contam. Toxicol. 94, 667 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Li, X. et al. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J. Bacteriol. 194, 1243 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Fan, H. et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J. Appl. Microbiol. 105, 529 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Liu, G. et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ. Microbiol. 14, 1624 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Wang, G., Huang, Y. & Li, J. Bacteria live on arsenic analysis of microbial arsenic metabolism—A review. Acta Microbiol. Sin. 51, 154 (2011).

    CAS 

    Google Scholar 

  • 66.

    Rosen, B. P. Biochemistry of arsenic detoxification. FEBS Lett. 529, 86 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Jahid, I. K., Lee, N. Y., Kim, A. & Ha, S. D. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in aeromonas hydrophila. J. Food Prot. 76, 239 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Hassan, Z. et al. Ample arsenite bio-oxidation activity in Bangladesh drinking water wells: A bonanza for bioremediation? Microorganisms 7, 246 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Dhar, R. K., Zheng, Y., Rubenstone, J. & Van Geen, A. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 526, 203 (2004).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Cummings, D. E., Caccavo, F., Fendorf, S. & Rosenzweig, R. F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33, 723 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Geetanjali, P. & Bhosale, S. P. B. Isolation and characterization of arsenate reducing bacteria from the waste water of an electroplating industry. Int. J. Curr. Microbiol. Appl. Sci. 3, 444–452 (2014).

    Google Scholar 

  • 72.

    Sanyal, S. K. et al. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6, 1–11 (2016).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Khan, M. Z. H., Liu, X., Tang, Y. & Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 117, 508 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract

    High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR