in

Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale

  • 1.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 2.

    Carson, W. & Schnitzer, S. Tropical Forest Community Ecology (John Wiley & Sons, 2011).

  • 3.

    Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).

    Article  Google Scholar 

  • 4.

    Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Zalamea, P.-C. et al. Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytol. 212, 400–408 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. USA 114, 11458–11463 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Ter Steege, H., Pitman, N. & Sabatier, D. A spatial model of tree alpha-diversity and tree density for the Amazon. Biodivers. Conserv. 12, 2255–2277 (2003).

    Article  Google Scholar 

  • 9.

    Leigh, E. G. Jr. et al. Why do some tropical forests have so many species of trees? Biotropica 36, 447–473 (2004).

    Google Scholar 

  • 10.

    Rahbek, C. & Graves, G. R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proc. R. Soc. Lond. B. 267, 2259–2265 (2000).

    CAS  Article  Google Scholar 

  • 11.

    Abrahamczyk, S., Kluge, J., Gareca, Y., Reichle, S. & Kessler, M. The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE 6, e27115 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 13.

    Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Doležal, J., Lanta, V., Mudrák, O. & Lepš, J. Seasonality promotes grassland diversity: interactions with mowing, fertilization and removal of dominant species. J. Ecol. 107, 203–215 (2019).

  • 15.

    Arnold, A. E. et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl Acad. Sci. USA 100, 15649–15654 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Arnold, A. E. & Engelbrecht, B. M. J. Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species. J. Trop. Ecol. 23, 369–372 (2007).

    Article  Google Scholar 

  • 17.

    Costa Pinto, L. S., Azevedo, J. L., Pereira, J. O., Carneiro Vieira, M. L. & Labate, C. A. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol. 147, 609–615 (2000).

    Article  Google Scholar 

  • 18.

    U’Ren, J. M. et al. Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. Mycol. Res. 113, 432–449 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 19.

    Sanchez-Azofeifa, A., Oki, Y., Wilson Fernandes, G., Ball, R. A. & Gamon, J. Relationships between endophyte diversity and leaf optical properties. Trees 26, 291–299 (2012).

    Article  Google Scholar 

  • 20.

    Vincent, J. B., Weiblen, G. D. & May, G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol. Ecol. 25, 825–841 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Suryanarayanan, T. S., Murali, T. S. & Venkatesan, G. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can. J. Bot. 80, 818–826 (2002).

    Article  Google Scholar 

  • 22.

    Zimmerman, N. B. & Vitousek, P. M. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc. Natl Acad. Sci. USA 109, 13022–13027 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Higgins, K. L., Arnold, A. E., Coley, P. D. & Kursar, T. A. Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure. Fungal Ecol. 8, 1–11 (2014).

    Article  Google Scholar 

  • 24.

    Darcy, J. L. et al. Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants. Mol. Ecol. 29, 3102–3115 (2020).

    Article  Google Scholar 

  • 25.

    Arnold, A. E. & Lutzoni, F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88, 541–549 (2007).

    PubMed  Article  Google Scholar 

  • 26.

    Tellez, P. H. Tropical plants and fungal symbionts: Leaf functional traits as drivers of plant-fungal interactions. PhD dissertation (Tulane University, 2019).

  • 27.

    U’Ren, J. M. et al. Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nat. Ecol. Evol. 3, 1430–1437 (2019).

    PubMed  Article  Google Scholar 

  • 28.

    Arnold, A. E. & Herre, E. A. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95, 388–398 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Rodríguez-Quiel, E. E., Mendieta-Leiva, G. & Bader, M. Y. Elevational patterns of bryophyte and lichen biomass differ among substrates in the tropical montane forest of Baru Volcano, Panama. J. Bryol. 41, 95–106 (2019).

    Article  Google Scholar 

  • 30.

    Magill, B., Solomon, J. & Stimmel, H. Tropicos Specimen Data. http://www.tropicos.org (2019).

  • 31.

    Arnold, A. E. et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst. Biol. 58, 283–297 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    U’Ren, J. M., Lutzoni, F., Miadlikowska, J., Laetsch, A. D. & Arnold, A. E. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am. J. Bot. 99, 898–914 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).

    Article  Google Scholar 

  • 34.

    Phillips, O. L., Hall, P., Gentry, A. H., Sawyer, S. A. & Vásquez, R. Dynamics and species richness of tropical rain forests. Proc. Natl Acad. Sci. USA 91, 2805–2809 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Usinowicz, J. et al. Temporal coexistence mechanisms contribute to the latitudinal gradient in forest diversity. Nature 550, 105–108 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  • 37.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article  Google Scholar 

  • 38.

    Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Van Bael, S., Estrada, C. & Arnold, A. E. Chapter 6: foliar endophyte communities and leaf traits in tropical trees. In The Fungal Community: Its Organization and Role in the Ecosystem. (eds Dighton, J. & White, J. F.) 79–94 (CRC Press, 2017).

  • 41.

    Oono, R. et al. Species diversity of fungal endophytes across a stress gradient for plants. New Phytol. 228, 210–225 (2020).

  • 42.

    Top, S. M., Preston, C. M., Dukes, J. S. & Tharayil, N. Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Front. Plant Sci. 8, 423 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Higginbotham, S. J. et al. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8, e73192 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 45.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  • 46.

    Prada, C. M. et al. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of tree communities in premontane tropical forest. J. Veg. Sci. 28, 859–870 (2017).

    Article  Google Scholar 

  • 47.

    Walker, K. Capturing ephemeral forest dynamics with hybrid time-series and composite mapping in the Republic of Panama. Int. J. Appl. Earth Obs. Geoinf. 87, 102029 (2020).

    Article  Google Scholar 

  • 48.

    Leung, B., Hudgins, E. J., Potapova, A. & Ruiz-Jaen, M. C. A new baseline for countrywide α-diversity and species distributions: illustration using > 6,000 plant species in Panama. Ecol. Appl. 29, e01866 (2019).

    PubMed  Article  Google Scholar 

  • 49.

    Pyke, C. R., Condit, R., Aguilar, S. & Lao, S. Floristic composition across a climatic gradient in a neotropical lowland forest. J. Veg. Sci. 12, 553–566 (2001).

    Article  Google Scholar 

  • 50.

    Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137–152 (1996).

    Article  Google Scholar 

  • 51.

    Bowman, E. A. & Arnold, A. E. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient. Am. J. Bot. 105, 687–699 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    U’Ren, J. M. et al. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi. Mol. Ecol. Resour. 14, 1032–1048 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    U’Ren, J. M. & Arnold, A. E. 96 well DNA extraction protocol for plant and lichen tissue stored in CTAB. protocols.io. https://doi.org/10.17504/protocols.io.fscbnaw (2017).

  • 54.

    Daru, B. H., Bowman, E. A., Pfister, D. H. & Arnold, A. E. A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20170395 (2018).

  • 55.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Oksanen, J. et al. Vegan: community ecology package, version 2.5-2. https://CRAN.R-project.org/package=vegan (2018).

  • 57.

    Schoener, T. W. Food webs from the small to the large: the Robert H. MacArthur award lecture. Ecology 70, 1559–1589 (1989).

    Article  Google Scholar 

  • 58.

    Apigo, A. & Oono, R. Dimensions of host specificity in foliar fungal endophytes. In Endophytes of Forest Trees: Biology and Applications (eds Pirttilä, A. M. & Frank, A. C.) 15–42 (Springer International Publishing, 2018).

  • 59.

    Oita, S. et al. Data from: climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. figshare https://doi.org/10.6084/m9.figshare.c.5084366.v1 (2020).


  • Source: Ecology - nature.com

    Valuing wetlands

    3 Questions: Claude Grunitzky MBA '12 on launching TRUE Africa University