IPCC. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
IPCC. Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (WMO, 2019).
Rogers, J. C. & Mosely-Thompson, E. Atlantic Arctic cyclones and mild Siberian winters of the 1980s. Geophys. Res. Lett. 22, 799–802 (1995).
Google Scholar
Davi, N. K., Jacoby, G. C., Curtis, A. E. & Baatarbileg, N. Extension of drought records for central Asia using tree rings: West-central Mongolia. J. Clim. 19, 288–299 (2006).
Google Scholar
Kattsov, V. M. & Semenov, S. M. Second Roshydromet Assessment Report on Climate Change and its Consequences in Russian Federation (Roshydromet, 2014).
Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N. & Pugach, S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Prog. Oceanogr. 47, 279–297 (2000).
Google Scholar
Liu, X. et al. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 564, 984–996 (2018).
Google Scholar
Cho, D. J. & Kim, K. Y. Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter. Clim. Dyn. 56, 1571–1588 (2021).
Google Scholar
Savkin, V. M. Reservoirs of Siberia: Consequences of their creation to water ecology and water management facilities. Sib. Ecol. J. 2, 109–121 (2000) (in Russian).
Poff, N. L. & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: An ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. Bioscience 52, 659–668 (2002).
Google Scholar
Osika, D. G., Otinova, AYu. & Ponomareva, N. L. About the origin of the global warming and the reasons for the formation of climatic anomalies and disasters. Arid Ecosyst. 19, 104–112 (2013) (in Russian).
Aras, E. Effects of multiple dam projects on river ecology and climate change: Çoruh River Basin, Turkey. Adv. Environ. Res. 7, 121 (2018).
Shen, P. & Zhao, S. 1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes. Clim. Change 164, 59. https://doi.org/10.1007/s10584-021-03045-9 (2021).
Google Scholar
Ward, J. V. & Stanford, J. A. The Ecology of Regulated Streams (Plenum Press, 1979).
Google Scholar
Ligon, F. K., Dietrich, W. E. & Trush, W. J. Downstream ecological effects of dams. Bioscience 45, 183–192 (1995).
Google Scholar
Gyau-Boakye, P. Environmental impacts of the Akosombo dam and effects of climate change on the lake levels. Environ. Dev. Sustain. 3, 17–29 (2001).
Google Scholar
Muth, R. T. et al. Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam. Final Report, Upper Colorado River Endangered Fish Recovery Program Project FG-53 (UCREFRP, 2000).
Degu, A. M. et al. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 38, L04405. https://doi.org/10.1029/2010GL046482 (2011).
Google Scholar
Normatov, I. S., Muminov, A. & Normatov, P. I. The impact of water reservoirs on biodiversity and food security. Creation of adaptation mechanisms. Glob. Perspect. Eng. Manag. 1, 21–25 (2012).
Butorin, N. V., Vendrov, S. L., Dyakonov, K. N., Reteyum, A. Y. & Romanenko, V. I. Effect of the Rybinsk reservoir on the surrounding area. In Man-Made Lakes: Their Problems and Environmental Effects (eds Ackerman, W. C. et al.) 246–250 (American Geophysical Union, 1973).
American Society of Civil Engineers. Guidelines for Retirement of Dams and Hydroelectric Facilities (American Society of Civil Engineers, 1997).
Rosenzweig, C. et al. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L. et al.) 79–131 (Cambridge UP, 2007).
Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
Google Scholar
Gill, D. S., Amthor, J. S. & Bormann, F. H. Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiol. 18, 281–289 (1998).
Google Scholar
Augspurger, C. K., Cheeseman, J. M. & Salk, C. F. Light gains and physiological capacity of understory woody plants during phenological avoidance of canopy shade. Funct. Ecol. 19, 537–546 (2005).
Google Scholar
Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob. Chang. Biol. 10, 1133–1145 (2004).
Google Scholar
Zeng, H., Jia, G. & Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 6, 045508. https://doi.org/10.1088/1748-9326/6/4/045508 (2011).
Google Scholar
Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. PNAS 117, 10397–10405 (2020).
Google Scholar
Badeck, F.-W. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309 (2004).
Google Scholar
Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).
Google Scholar
Rossi, S., Girard, M.-J.J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).
Google Scholar
McCarty, J. P. Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001).
Google Scholar
Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. Oceans 94, 14485–14498 (1989).
Google Scholar
Hunt, J. D. et al. Hydropower impact on the river flow of a humid regional climate. Clim. Change 163, 379–393 (2020).
Google Scholar
Kosmakov, I. V. Thermal and Ice Regime in the Upper and Lower Reaches of High-Pressure Hydroelectric Power Stations on the Yenisei (Klaretianum, 2001) (in Russian).
Bryzgalov, V. I. From the Experience of Creation and Development of the Krasnoyarsk and Sayano-Shushenskaya Hydroelectric Power Plants (Siberian Publ. House “Surikov,” 1999) (in Russian).
Sheffield, J., Andreadis, K. M. & Wood, E. F. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).
Google Scholar
Liu, H. et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Change Biol. 19, 2500–2510 (2013).
Google Scholar
Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451. https://doi.org/10.1038/s41467-020-20678-z (2021).
Google Scholar
Amrit, K., Pandey, R. P., Mishra, S. K. & Daradur, M. Relationship of drought frequency and severity with range of annual temperature variation. Nat. Hazards 92, 1199–1210 (2018).
Google Scholar
Jackson, R. D., Idso, S. B., Reginato, R. J. & Pinter, P. J. Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981).
Google Scholar
Bao, G., Liu, Y. & Linderholm, H. W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313, 162–172 (2012).
Google Scholar
de Vrese, P. & Stacke, T. Irrigation and hydrometeorological extremes. Clim. Dyn. 55, 1521–1537 (2020).
Google Scholar
Gustokashina, N. N. & Balybina, A. S. Variation in the natural-climatic characteristics of the territory adjacent to the reservoirs of the Angara chain of power plants. Geogr. Nat. Res. 4, 93–100 (2005) (in Russian).
Arzac, A. et al. Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann. For. Sci. 76, 96 (2019).
Google Scholar
Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).
Google Scholar
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).
Google Scholar
Piper, F. I. & Fajardo, A. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J. Ecol. 102, 1101–1111 (2014).
Google Scholar
Khansaritoreh, E., Schuldt, B. & Dulamsuren, C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Ann. For. Sci. 75, 30. https://doi.org/10.1007/s13595-018-0701-2 (2018).
Google Scholar
Urban, J., Rubtsov, A. V., Urban, A. V., Shashkin, A. V. & Benkova, V. E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 271, 64–72 (2019).
Google Scholar
Kolari, P., Lappalainen, H. K., HäNninen, H. & Hari, P. Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus B Chem. Phys. Meteorol. 59, 542–552 (2007).
Google Scholar
Wu, J., Guan, D., Yuan, F., Wang, A. & Jin, C. Soil temperature triggers the onset of photosynthesis in Korean pine. PLoS ONE 8, e65401. https://doi.org/10.1371/journal.pone.0065401 (2013).
Google Scholar
Yang, Q. et al. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat. Commun. 11, 128. https://doi.org/10.1038/s41467-019-13954-0 (2020).
Google Scholar
Tanja, S. et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol. 9, 1410–1426 (2003).
Google Scholar
Sevanto, S. et al. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 26, 749–757 (2006).
Google Scholar
Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).
Google Scholar
Babushkina, E. A., Belokopytova, L. V., Zhirnova, D. F. & Vaganov, E. A. Siberian spruce tree ring anatomy: Imprint of development processes and their high-temporal environmental regulation. Dendrochronologia 53, 114–124 (2019).
Google Scholar
Cannell, M. G. R. & Smith, R. I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 23, 177–191 (1986).
Google Scholar
Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146 (2008).
Google Scholar
Ziaco, E., Biondi, F., Rossi, S. & Deslauriers, A. Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree Physiol. 36, 818–831 (2016).
Google Scholar
Rahman, M. H. et al. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 10, 14341. https://doi.org/10.1038/s41598-020-70356-9 (2020).
Google Scholar
Katz, R. W. & Brown, B. G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 21, 289–302 (1992).
Google Scholar
Germain, S. J. & Lutz, J. A. Climate extremes may be more important than climate means when predicting species range shifts. Clim. Chang. 163, 579–598 (2020).
Google Scholar
Vendrov, S. L., Avakyan, A. B., Dyakonov, K. N. & Reteyum, A. Y. The Role of Reservoirs in Changing Natural Conditions (Znaniye, 1968) (in Russian).
Stivari, S. M., De Oliveira, A. P. & Soares, J. On the climate impact of the local circulation in the Itaipu Lake area. Clim. Chang. 72, 103–121 (2005).
Google Scholar
Wilks, D. S. Statistical Methods in the Atmospheric Sciences 4th edn. (Elsevier, 2019).
Arguez, A. & Vose, R. S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 92, 699–704 (2011).
Google Scholar
Rosgidromet. Guidelines for the Compilation of Agrometeorological Yearbook for the Agricultural Zone of the Russian Federation. Guiding Document 52.33.725–2010 (Russian Scientific Research Institute of Hydrometeorological Information, World Data Center, 2010) (in Russian).
Chae, H. et al. Local variability in temperature, humidity and radiation in the Baekdu Daegan Mountain protected area of Korea. J. Mt. Sci. 9, 613–627 (2012).
Google Scholar
Wypych, A., Ustrnul, Z. & Schmatz, D. R. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J. Mt. Sci. 15, 237–253 (2018).
Google Scholar
Selyaninov, G. T. About climate agricultural estimation. Proc. Agric. Meteorol. 20, 165–177 (1928) (in Russian).
Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M. & Vaganov, E. A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Change. 17, 1725–1737 (2017).
Google Scholar
Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology. Application in Environmental Sciences (Kluwer Academic Publishers, 1990).
Google Scholar
Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications: User Reference (RINNTECH, 2003).
Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57, 205–221 (2001).
Cook, E. R, Krusic, P. J., Holmes, R. H. & Peters, K. Program ARSTAN Ver. ARS41d. https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (2007).
Strackee, J. & Jansma, E. The statistical properties of mean sensitivity—A reappraisal. Dendrochronologia 10, 121–135 (1992).
Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 23, 201–213 (1984).
Google Scholar
Yasmeen, S. et al. Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing’an Mountains, China. Dendrochronologia 58, 125645. https://doi.org/10.1016/j.dendro.2019.125645 (2019).
Google Scholar
Source: Ecology - nature.com