Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Blenkinsop, S. & Fowler, H. J. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. J. Hydrol. 342, 50–71 (2007).
Guardiola-Claramonte, M. et al. Decreased streamflow in semi-arid basins following drought-induced tree die-off: a counter-intuitive and indirect climate impact on hydrology. J. Hydrol. 406, 225–233 (2011).
Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
Chaturvedi, R. K., Raghubanshi, A. S., Tomlinson, K. & Singh, J. S. Impacts of human disturbance in tropical dry forests increase with soil moisture stress. J. Veg. Sci. 28, 997–1007 (2017).
Sjöman, H., Hirons, A. D. & Bassuk, N. L. Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. Urban Ecosyst. 21, 1171–1188 (2018).
Esperon-Rodriguez, M. et al. Assessing the vulnerability of Australia’s urban forests to climate extremes. Plants People Planet. 1, 387–397 (2019).
Thaiutsa, B., Puangchit, L., Kjelgren, R. & Arunpraparut, W. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. Urban Green. 7, 219–229 (2008).
Chaturvedi, R.K., Tripathi, A., Raghubanshi, A.S. & Singh, J.S. Functional traits indicate a continuum of treee drought strategies across a soil water availability gradient in a tropical dry forest. For. Ecol. Manag. 2020 (In press).
Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Growth of tree seedlings in a tropical dry forest in relation to soil moisture and leaf traits. J. Plant Ecol. 6, 158–170 (2013).
Krauss, K. W., Twilley, R. R., Doyle, T. W. & Gardiner, E. S. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Tree Physiol. 26, 959–968 (2006).
Yan, M.-J., Yamanaka, N., Yamamoto, F. & Du, S. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying. Acta Physiol. Plant. 32, 183–189 (2010).
Yan, W., Zheng, S., Zhong, Y. & Shangguan, Z. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia. Sci. Rep. 7, 4470 (2017).
Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
Wullschleger, S. D., Gunderson, C. A., Hanson, P. J., Wilson, K. B. & Norby, R. J. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration: interacting variables and perspectives of scale. New Phytol. 153, 485–496 (2002).
Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x (2007).
Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytol. 205, 518–525 (2015).
Schäfer, K. V. R. et al. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Glob. Chang. Biol. 9, 1378–1400 (2003).
Williams, M. et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant. Cell Environ. 19, 911–927 (1996).
Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. For. Sci. 42, 193–200 (1985).
Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).
Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Agron. J. 95, 1371–1379 (2003).
Burgess, S. S. O. et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, 589–598 (2001).
Sakuratani, T. A Heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 37, 9–17 (1981).
Chang, X., Zhao, W., Zhang, Z. & Su, Y. Sap flow and tree conductance of shelter-belt in arid region of China. Agric. For. Meteorol. 138, 132–141 (2006).
Ewers, B. E., Oren, R., Phillips, N., Strömgren, M. & Linder, S. Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. Tree Physiol. 21, 841–850 (2001).
Pataki, D. E., Oren, R. & Phillips, N. Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. J. Exp. Bot. 49, 871–878 (1998).
Ryan, M. G. et al. Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124, 553–560 (2000).
Oishi, A. C., Oren, R., Novick, K. A., Palmroth, S. & Katul, G. G. Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems 13, 421–436 (2010).
Oishi, A. C., Oren, R. & Stoy, P. C. Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 148, 1719–1732 (2008).
Bell, D. M. et al. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data. Tree Physiol. 35, 792–802 (2015).
Kim, H.-S., Oren, R. & Hinckley, T. M. Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiol. 28, 559–577 (2008).
Meinzer, F. C., James, S. A. & Goldstein, G. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiol. 24, 901–909 (2004).
Phillips, N., Nagchaudhuri, A., Oren, R. & Katul, G. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11, 412–419 (1997).
Tor-ngern, P. et al. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecol. Appl. 27, 118–133 (2017).
Clark, J. S. et al. Inferential ecosystem models, from network data to prediction. Ecol. Appl. 21, 1523–1536 (2011).
Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot. Sin. 46, 631–646 (2004).
Ewers, B. & Oren, R. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol. 20, 579–589 (2000).
Ward, E. J., Oren, R., Sigurdsson, B. D., Jarvis, P. G. & Linder, S. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol. 28, 579–596 (2008).
Addington, R. N., Mitchell, R. J., Oren, R. & Donovan, L. A. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24, 561–569 (2004).
Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant. Cell Environ. 18, 339–355 (1995).
Meinzer, F. C., Hinckley, T. M. & Ceulemans, R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant. Cell Environ. 20, 1301–1308 (1997).
Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant. Cell Environ. 18, 357–364 (1995).
Loustau, D. et al. Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107, 33–42 (1996).
Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214 (2001).
Moore, G. W., Bond, B. J., Jones, J. A., Phillips, N. & Meinzer, F. C. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Tree Physiol. 24, 481–491 (2004).
Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?. Plant. Cell Environ. 40, 237–248 (2017).
Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant. Cell Environ. 26, 443–450 (2003).
Choat, B., Ball, M., Luly, J., Donnelly, C. & Holtum, J. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).
Tor-ngern, P. & Puangchit, L. Effects of varying soil and atmospheric water deficit on water use characteristics of tropical street tree species. Urban For. Urban Green. 36, 76–83 (2018).
Jarvis, P. G. Transpiration and assimilation of tree and agricultural crops: the omega factor. In Attributes of Trees as Crop Plants (eds Cannel, M. G. R. & Jackson, J. E.) 460–480 (Institute of Terrestrial Ecology Huntingdon, UK, 1985).
Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R. & Hoffmann, W. A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant. Cell Environ. 39, 2221–2234 (2016).
Mahan, J. R. & Upchurch, D. R. Maintenance of constant leaf temperature by plants—I Hypothesis-limited homeothermy. Environ. Exp. Bot. 28, 351–357 (1988).
Schultz, H. R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant. Cell Environ. 26, 1393–1405 (2003).
Harris, P. P., Huntingford, C., Cox, P. M., Gash, J. H. C. & Malhi, Y. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agric. For. Meteorol. 122, 215–227 (2004).
Kjelgren, R., Joyce, D. & Doley, D. Subtropical-tropical urban tree water relations and drought stress response strategies. Arboric. Urban For. 39, 125–131 (2013).
West, A. G., Hultine, K. R., Jackson, T. L. & Ehleringer, J. R. Differential summer water use by Pinus edulis and Juniperus osteosperma reflects contrasting hydraulic characteristics. Tree Physiol. 27, 1711–1720 (2007).
Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).
Suralta, R. R. & Yamauchi, A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 64, 75–82 (2008).
Lawler, J. J. et al. The scope and treatment of threats in endangered species recovery plans. Ecol. Appl. 12, 663–667 (2002).
Liu, H., Lin, J., Zhang, M., Lin, Z. & Wen, T. Extinction of poorest competitors and temporal heterogeneity of habitat destruction. Ecol. Modell. 219, 30–38 (2008).
Baltzer, J. L., Grégoire, D. M., Bunyavejchewin, S., Noor, N. S. M. & Davies, S. J. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai Peninsula. Am. J. Bot. 96, 2214–2223 (2009).
Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102 (2009).
Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics 287 (Butterworth-Heinemann, Oxford, 1990).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012).
Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. Software X. 5, 139–143 (2016).
Ball, J., Woodrow, I. & Berry, J. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog. Photosynth. Res. 4, 221–224 (1987).
Jarvis, P. G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London. B Biol. Sci. 273, 593–610 (1976).
Source: Ecology - nature.com