in

Comparison of water-use characteristics of tropical tree saplings with implications for forest restoration

  • 1.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 2.

    Blenkinsop, S. & Fowler, H. J. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. J. Hydrol. 342, 50–71 (2007).

    Article  ADS  Google Scholar 

  • 3.

    Guardiola-Claramonte, M. et al. Decreased streamflow in semi-arid basins following drought-induced tree die-off: a counter-intuitive and indirect climate impact on hydrology. J. Hydrol. 406, 225–233 (2011).

    Article  ADS  Google Scholar 

  • 4.

    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Chaturvedi, R. K., Raghubanshi, A. S., Tomlinson, K. & Singh, J. S. Impacts of human disturbance in tropical dry forests increase with soil moisture stress. J. Veg. Sci. 28, 997–1007 (2017).

    Article  Google Scholar 

  • 6.

    Sjöman, H., Hirons, A. D. & Bassuk, N. L. Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. Urban Ecosyst. 21, 1171–1188 (2018).

    Article  Google Scholar 

  • 7.

    Esperon-Rodriguez, M. et al. Assessing the vulnerability of Australia’s urban forests to climate extremes. Plants People Planet. 1, 387–397 (2019).

    Article  Google Scholar 

  • 8.

    Thaiutsa, B., Puangchit, L., Kjelgren, R. & Arunpraparut, W. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. Urban Green. 7, 219–229 (2008).

    Article  Google Scholar 

  • 9.

    Chaturvedi, R.K., Tripathi, A., Raghubanshi, A.S. & Singh, J.S. Functional traits indicate a continuum of treee drought strategies across a soil water availability gradient in a tropical dry forest. For. Ecol. Manag. 2020 (In press).

  • 10.

    Chaturvedi, R. K., Raghubanshi, A. S. & Singh, J. S. Growth of tree seedlings in a tropical dry forest in relation to soil moisture and leaf traits. J. Plant Ecol. 6, 158–170 (2013).

    Article  Google Scholar 

  • 11.

    Krauss, K. W., Twilley, R. R., Doyle, T. W. & Gardiner, E. S. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod. Tree Physiol. 26, 959–968 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Yan, M.-J., Yamanaka, N., Yamamoto, F. & Du, S. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying. Acta Physiol. Plant. 32, 183–189 (2010).

    Article  Google Scholar 

  • 13.

    Yan, W., Zheng, S., Zhong, Y. & Shangguan, Z. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia. Sci. Rep. 7, 4470 (2017).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  • 14.

    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).

    Article  Google Scholar 

  • 15.

    Wullschleger, S. D., Gunderson, C. A., Hanson, P. J., Wilson, K. B. & Norby, R. J. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration: interacting variables and perspectives of scale. New Phytol. 153, 485–496 (2002).

    CAS  Article  Google Scholar 

  • 16.

    Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant. Cell Environ. 30, 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytol. 205, 518–525 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Schäfer, K. V. R. et al. Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Glob. Chang. Biol. 9, 1378–1400 (2003).

    Article  ADS  Google Scholar 

  • 19.

    Williams, M. et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant. Cell Environ. 19, 911–927 (1996).

    Article  Google Scholar 

  • 20.

    Granier, A. Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann. For. Sci. 42, 193–200 (1985).

    Article  Google Scholar 

  • 21.

    Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3, 309–320 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Green, S., Clothier, B. & Jardine, B. Theory and practical application of heat pulse to measure sap flow. Agron. J. 95, 1371–1379 (2003).

    Article  Google Scholar 

  • 23.

    Burgess, S. S. O. et al. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21, 589–598 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Sakuratani, T. A Heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 37, 9–17 (1981).

    Article  Google Scholar 

  • 25.

    Chang, X., Zhao, W., Zhang, Z. & Su, Y. Sap flow and tree conductance of shelter-belt in arid region of China. Agric. For. Meteorol. 138, 132–141 (2006).

    Article  ADS  Google Scholar 

  • 26.

    Ewers, B. E., Oren, R., Phillips, N., Strömgren, M. & Linder, S. Mean canopy stomatal conductance responses to water and nutrient availabilities in Picea abies and Pinus taeda. Tree Physiol. 21, 841–850 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Pataki, D. E., Oren, R. & Phillips, N. Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. J. Exp. Bot. 49, 871–878 (1998).

    CAS  Article  Google Scholar 

  • 28.

    Ryan, M. G. et al. Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia 124, 553–560 (2000).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  • 29.

    Oishi, A. C., Oren, R., Novick, K. A., Palmroth, S. & Katul, G. G. Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. Ecosystems 13, 421–436 (2010).

    Article  Google Scholar 

  • 30.

    Oishi, A. C., Oren, R. & Stoy, P. C. Estimating components of forest evapotranspiration: a footprint approach for scaling sap flux measurements. Agric. For. Meteorol. 148, 1719–1732 (2008).

    Article  ADS  Google Scholar 

  • 31.

    Bell, D. M. et al. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data. Tree Physiol. 35, 792–802 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Kim, H.-S., Oren, R. & Hinckley, T. M. Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiol. 28, 559–577 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Meinzer, F. C., James, S. A. & Goldstein, G. Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees. Tree Physiol. 24, 901–909 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Phillips, N., Nagchaudhuri, A., Oren, R. & Katul, G. Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11, 412–419 (1997).

    Article  Google Scholar 

  • 35.

    Tor-ngern, P. et al. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecol. Appl. 27, 118–133 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Clark, J. S. et al. Inferential ecosystem models, from network data to prediction. Ecol. Appl. 21, 1523–1536 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Lu, P., Urban, L. & Zhao, P. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. Acta Bot. Sin. 46, 631–646 (2004).

    Google Scholar 

  • 38.

    Ewers, B. & Oren, R. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiol. 20, 579–589 (2000).

    PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Ward, E. J., Oren, R., Sigurdsson, B. D., Jarvis, P. G. & Linder, S. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Tree Physiol. 28, 579–596 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Addington, R. N., Mitchell, R. J., Oren, R. & Donovan, L. A. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris. Tree Physiol. 24, 561–569 (2004).

    PubMed  Article  Google Scholar 

  • 41.

    Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant. Cell Environ. 18, 339–355 (1995).

    CAS  Article  Google Scholar 

  • 42.

    Meinzer, F. C., Hinckley, T. M. & Ceulemans, R. Apparent responses of stomata to transpiration and humidity in a hybrid poplar canopy. Plant. Cell Environ. 20, 1301–1308 (1997).

    Article  Google Scholar 

  • 43.

    Monteith, J. L. A reinterpretation of stomatal responses to humidity. Plant. Cell Environ. 18, 357–364 (1995).

    Article  Google Scholar 

  • 44.

    Loustau, D. et al. Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107, 33–42 (1996).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 45.

    Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214 (2001).

    Article  Google Scholar 

  • 46.

    Moore, G. W., Bond, B. J., Jones, J. A., Phillips, N. & Meinzer, F. C. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA. Tree Physiol. 24, 481–491 (2004).

    PubMed  Article  Google Scholar 

  • 47.

    Leigh, A., Sevanto, S., Close, J. D. & Nicotra, A. B. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?. Plant. Cell Environ. 40, 237–248 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutiérrez, M. V. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant. Cell Environ. 26, 443–450 (2003).

    Article  Google Scholar 

  • 49.

    Choat, B., Ball, M., Luly, J., Donnelly, C. & Holtum, J. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Tor-ngern, P. & Puangchit, L. Effects of varying soil and atmospheric water deficit on water use characteristics of tropical street tree species. Urban For. Urban Green. 36, 76–83 (2018).

    Article  Google Scholar 

  • 51.

    Jarvis, P. G. Transpiration and assimilation of tree and agricultural crops: the omega factor. In Attributes of Trees as Crop Plants (eds Cannel, M. G. R. & Jackson, J. E.) 460–480 (Institute of Terrestrial Ecology Huntingdon, UK, 1985).

    Google Scholar 

  • 52.

    Marchin, R. M., Broadhead, A. A., Bostic, L. E., Dunn, R. R. & Hoffmann, W. A. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant. Cell Environ. 39, 2221–2234 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Mahan, J. R. & Upchurch, D. R. Maintenance of constant leaf temperature by plants—I Hypothesis-limited homeothermy. Environ. Exp. Bot. 28, 351–357 (1988).

    Article  Google Scholar 

  • 54.

    Schultz, H. R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant. Cell Environ. 26, 1393–1405 (2003).

    Article  Google Scholar 

  • 55.

    Harris, P. P., Huntingford, C., Cox, P. M., Gash, J. H. C. & Malhi, Y. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agric. For. Meteorol. 122, 215–227 (2004).

    Article  ADS  Google Scholar 

  • 56.

    Kjelgren, R., Joyce, D. & Doley, D. Subtropical-tropical urban tree water relations and drought stress response strategies. Arboric. Urban For. 39, 125–131 (2013).

    Google Scholar 

  • 57.

    West, A. G., Hultine, K. R., Jackson, T. L. & Ehleringer, J. R. Differential summer water use by Pinus edulis and Juniperus osteosperma reflects contrasting hydraulic characteristics. Tree Physiol. 27, 1711–1720 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Hatfield, J. L. & Prueger, J. H. Temperature extremes: effect on plant growth and development. Weather Clim. Extrem. 10, 4–10 (2015).

    Article  Google Scholar 

  • 59.

    Suralta, R. R. & Yamauchi, A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 64, 75–82 (2008).

    CAS  Article  Google Scholar 

  • 60.

    Lawler, J. J. et al. The scope and treatment of threats in endangered species recovery plans. Ecol. Appl. 12, 663–667 (2002).

    Article  Google Scholar 

  • 61.

    Liu, H., Lin, J., Zhang, M., Lin, Z. & Wen, T. Extinction of poorest competitors and temporal heterogeneity of habitat destruction. Ecol. Modell. 219, 30–38 (2008).

    Article  Google Scholar 

  • 62.

    Baltzer, J. L., Grégoire, D. M., Bunyavejchewin, S., Noor, N. S. M. & Davies, S. J. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai Peninsula. Am. J. Bot. 96, 2214–2223 (2009).

    PubMed  Article  Google Scholar 

  • 63.

    Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102 (2009).

    Article  Google Scholar 

  • 64.

    Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics 287 (Butterworth-Heinemann, Oxford, 1990).

    Google Scholar 

  • 65.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9(7), 671–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Oishi, A. C., Hawthorne, D. A. & Oren, R. Baseliner: an open-source, interactive tool for processing sap flux data from thermal dissipation probes. Software X. 5, 139–143 (2016).

    ADS  Google Scholar 

  • 67.

    Ball, J., Woodrow, I. & Berry, J. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog. Photosynth. Res. 4, 221–224 (1987).

    Google Scholar 

  • 68.

    Jarvis, P. G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. London. B Biol. Sci. 273, 593–610 (1976).

    CAS  Article  ADS  Google Scholar 


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web