in

Conceptual frameworks facilitate integration for transdisciplinary urban science

  • 1.

    Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article  Google Scholar 

  • 2.

    Anderies, J. M., Folke, C., Walker, B. & Ostrom, E. Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol. Soc. 18, 8 (2013).

    Article  Google Scholar 

  • 3.

    Brenner, N. & Schmid, C. Planetary urbanization. In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 142–463 (Jovis Verlag, 2014).

  • 4.

    Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267 (2019).

    Article  Google Scholar 

  • 5.

    McPhearson, T. Scientists must have a say in the future of cities. Nature 538, 165–166 (2016).

    CAS  Article  Google Scholar 

  • 6.

    Groffman, P. M. et al. Moving towards a new Urban Systems Science. Ecosystems https://doi.org/10.1007/s10021-016-0053-4 (2016).

  • 7.

    Pataki, D. E. Grand challenges in urban ecology. Front. Ecol. Evol. 3, 57 (2015).

    Article  Google Scholar 

  • 8.

    National Science Foundation. What is Convergence?|NSF-National Science Foundation. https://www.nsf.gov/od/oia/convergence/index.jsp (Accessed April 23, 2019).

  • 9.

    Ramaswami, A. et al. Sustainable Urban Systems: Articulating a Long-Term Convergence Research Agenda. Vol. 31 (National Science Foundation, 2018).

  • 10.

    Grimm, N. B., Pickett, S. T. A., Hale, R. L. & Cadenasso, M. L. Does the ecological concept of disturbance have utility in urban social-ecological-technological systems? Ecosyst. Health Sustain 3, e01255 (2017).

    Article  Google Scholar 

  • 11.

    McPhearson, T. et al. Advancing urban ecology towards a science of cities. BioScience 66, 198–212 (2016).

    Article  Google Scholar 

  • 12.

    United Nations. Transforming Our World: the 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/post2015/transformingourworld (Accessed March 6, 2020).

  • 13.

    Seto, K. C. et al. Urban land teleconnections and sustainability. Proc. Natl Acad. Sci. USA 109, 7687–7692 (2012).

    CAS  Article  Google Scholar 

  • 14.

    Folke, C., Biggs, R., Norstrom, A. V., Reyers, B. & Rockstrom, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).

    Article  Google Scholar 

  • 15.

    Grimm, N. B., Cook, E. M., Hale, R. L. & Iwaniec, D. M. A broader framing of ecosystem services in cities: benefits and challenges of built, natural, or hybrid system function. In The Routledge Handbook of Urbanization and Global Environmental Change (eds. Seto, K. C., Solecki, W. D. & Griffith, C. A.) 203–212 (Routledge, 2016).

  • 16.

    Pelling, M. & Manuel-Navarrete, D. From resilience to transformation: the adaptive cycle in two Mexican urban centers. Ecol. Soc. 16, 11 (2011).

    Article  Google Scholar 

  • 17.

    Meerow, S., Newell, J. P. & Stults, M. Defining urban resilience: a review. Landsc. Urban Plan. 147, 38–49 (2016).

    Article  Google Scholar 

  • 18.

    Shane, D. G. Recombinant Urbanism: Conceptual Modeling in Architecture. (John Wiley & Sons, 2005).

  • 19.

    McHale, M. R. et al. The new global urban realm: complex, connected, diffuse, and diverse social-ecological systems. Sustainability 7, 5211–5240 (2015).

    Article  Google Scholar 

  • 20.

    Ellin, N. Integral urbanism: a context for urban design. In Resilience in ecology and urban design: linking theory and practice for sustainable cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 63–78 (Springer, 2013).

  • 21.

    Marcotullio, P. J. & Solecki, W. What is a city? an essential definition for sustainability. In Urbanization and Sustainability: Linking Urban Ecology, Environmental Justice, and Environmental Change (eds. Boone, C. G. & Fragkias, M.) 11–25 (Springer, 2013).

  • 22.

    Burch, W. R., Jr., Machlis, G. E. & Force, J. E. The Structure and Dynamics of Human Ecosystems: toward A Model for Understanding and Action. (Yale University Press, 2017).

  • 23.

    Redman, C., Grove, J. M. & Kuby, L. Toward a Unified Understanding of Human Ecosystems: Integrating Social Sciences Into Long-term Ecological Research. Vol. 13 (LTER Network, 2000).

  • 24.

    Barnett, R. & Margetts, J. Disturbanism in the South Pacific: disturbance ecology as a basis for urban resilience in small island states. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 443–459 (Springer, 2013).

  • 25.

    Folke, C. et al. Resileince and Sustainable Development: Building Adaptive Capacity in A World of Transformations. (Ministry of the Environment, 2002).

  • 26.

    Scheffer, M., Westley, F., Brock, W. A. & Holmgren, M. Dynamic interaction of societies and ecosystems–linking theories from ecology, economy, and sociology. In Panarchy: Understanding Transformations in Human and Natural Systems (eds. Gunderson, L. H. & Holling, C. S.) 195–239 (Island Press, 2002).

  • 27.

    Pickett, S. T. A. et al. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 20, 1–14 (2017).

    Article  Google Scholar 

  • 28.

    Wu, J. G. & Loucks, O. L. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q. Rev. Biol. 70, 439–466 (1995).

    Article  Google Scholar 

  • 29.

    Boone, C. G. et al. Reconceptualizing land for sustainable urbanity. In Rethinking Urban Land Use in A Global Era (eds. Seto, K. C. & Reenberg, A.) 313–330 (MIT Press, 2014).

  • 30.

    Machlis, G. E., Force, J. E. & Burch, W. R. The human ecosystem 1. The human ecosystem as an organizing concept in ecosystem management. Soc. Nat. Resour. 10, 347–367 (1997).

    Article  Google Scholar 

  • 31.

    Cadenasso, M. L. & Pickett, S. T. A. Three tides: the development and state of the art of urban ecological science. In Resilience in Ecology and Urban Design: Linking Theory and Practice for Sustainable Cities (eds. Pickett, S. T. A., Cadenasso, M. L. & McGrath, B.) 29–46 (Springer, 2013).

  • 32.

    Collins, S. L. et al. An integrated conceptual framework for long-term social-ecological research. Front. Ecol. Environ. 9, 351–357 (2011).

    Article  Google Scholar 

  • 33.

    Naveh, Z. The total human ecosystem: integrating ecology and economics. BioScience 50, 357–361 (2000).

    Article  Google Scholar 

  • 34.

    Pickett, S. T. A. & Cadenasso, M. L. Ecosystem as a multidimensional concept: meaning, model and metaphor. Ecosystems 5, 1–10 (2002).

    Article  Google Scholar 

  • 35.

    Alberti, M. Advances in Urban Ecology: Integrating Humans and Ecological Processes in Urban Ecosystems. (Springer, 2008).

  • 36.

    Pickett, S. T. A. & Grove, J. M. Urban ecosystems: what would Tansley do? Urban Ecosyst. 12, 1–8 (2009).

    Article  Google Scholar 

  • 37.

    Lachmund, J. Greening Berlin. (MIT Press, 2013).

  • 38.

    Rademacher, A., Cadenasso, M. L. & Pickett, S. T. A. From feedbacks to coproduction: toward an integrated conceptual framework for urban ecosystems. Urban Ecosyst. https://doi.org/10.1007/s11252-018-0751-0 (2018).

  • 39.

    Johnson, E. A. & Miyanishi, K. (eds.) Plant Disturbance Ecology: the Process and the Response. (Academic Press, Burlington, 2007).

  • 40.

    Pickett, S. T. A. & White, P. S. (eds.) The Ecology of Natural Disturbance and Patch Dynamics. (Academic Press, Orlando, 1985).

  • 41.

    Schumpeter, J. A. The Theory of Economic Development: an Inquiry Into Profits, Capital, Credit, Interest, and the Business Cycle. (Transaction Books, 1983).

  • 42.

    Peters, D. P. C. et al. Cross-system comparisons elucidate distrubance complexities and generalities. Ecosphere 2, art 81 (2011).

    Article  Google Scholar 

  • 43.

    Holling, C. S. Engineering resilience versus ecological resilience. In Engineering within Ecological Constraints (ed. Schulze, P. C.) 31–44 (National Academies of Engineering, 1996).

  • 44.

    Gunderson, L. H. & Holling, C. S. (eds.) Panarchy: understanding transformations in human and natural systems. (Island Press, Washington DC, 2002).

  • 45.

    Walker, B., Holling, C. S., Carpenter, S. R. & Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 9, Article 5 (2004).

    Article  Google Scholar 

  • 46.

    McPhearson, T., Andersson, E., Elmqvist, T. & Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Services 12, 152–156 (2015).

    Article  Google Scholar 

  • 47.

    Tidball, K., Frantzeskaki, N. & Elmqvist, T. Traps! An introduction to expanding thinking on persistent maladaptive states in pursuit of resilience. Sustain. Sci. 11, 861–866 (2016).

    Article  Google Scholar 

  • 48.

    Biggs, R., Westley, F. R. & Carpenter, S. R. Navigating the back loop: fostering social innovation and transformation in ecosystem management. Ecol. Soc. 15, 9 (2010).

    Article  Google Scholar 

  • 49.

    Changnon, S. A., Kunkel, K. E. & Reinke, B. C. Impacts and responses to the 1995 heat wave: a call to action. Bullet. Am. Meteorol. Soc. 77, 1497–1506 (1996).

    Article  Google Scholar 

  • 50.

    Borden, K. A. & Cutter, S. L. Spatial patterns of natural hazards mortality in the United States. Int. J. Health Geogr. 7, 64 (2008).

    Article  Google Scholar 

  • 51.

    Park, R. E. & Burgess, E. W. The City (University of Chicago Press, 1925).

  • 52.

    Jacobs, J. The Death and Life of Great American Cities (Random House, 1961).

  • 53.

    Lynch, K. Good City Form (MIT Press, 1981).

  • 54.

    Shane, D. G. Urban Design Since 1945–A Global Perspective (John Wiley & Sons, Ltd, 2011).

  • 55.

    Hamstead, Z., Farmer, C. & McPhearson, T. Landscape-based extreme heat vulnerability assessment. J. Extreme Event. 5, 1–23 (2018).

    Google Scholar 

  • 56.

    Uejio, C. K. et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics and neighborhood stability. Health Place 17, 498–507 (2011).

    Article  Google Scholar 

  • 57.

    Rosenthal, J. K., Kinney, P. L. & Metzger, K. B. Intra-urban vulnerability to heat-related mortality in New York City. 1997–2006. Health Place 30, 45–60 (2014).

    Google Scholar 

  • 58.

    Madrigano, J., Ito, K., Johnson, S., Kinney, P. L. & Matte, T. A case-only study of vulnerability to heat wave–related mortality in New York City (2000–2011). Environ. Health Perspect. 123, 672–678 (2015).

    Article  Google Scholar 

  • 59.

    Allen, T. F. H. & Starr, T. B. Hierarchy: Perspectives for Ecological Complexity (2nd edn.) (University of Chicago Press, Chicago, 2017).

  • 60.

    McGrath, B. & Shane, G. Introduction: metropolis, megalopolis, and metacity. In The SAGE Handbook of Architectural Theory (eds. Crysler, C. G., Cairns, S. & Heynen, H.) (SAGE, 2012).

  • 61.

    Mihaljevic, J. R. (2012). Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329 (2012).

    Article  Google Scholar 

  • 62.

    McGrath, B., Sangawongse, S., Thaikatoo, D. & Corte, M. B. The architecture of the metacity: land use change, patch dynamics and urban form in Chiang Mai, Thailand. Urban Plan. 2, 53–71 (2017).

    Article  Google Scholar 

  • 63.

    Leibold, M. A. The metacommunity concept and its theoretical underpinnings. In The Theory of Ecology (eds. Scheiner, S. M. & Willig, M. R.) 163–183 (University of Chicago Press, 2011).

  • 64.

    McGrath, B. & Pickett, S. T. A. The metacity: a conceptual framework for integrating ecology and urban design. Challenges 2011, 55–72 (2011).

    Article  Google Scholar 

  • 65.

    Batty, M. The New Science of Cities. (MIT Press, 2013).

  • 66.

    Gandy, M. Where does the city end? In Implosions/explosions: Towards A Study of Planetary Urbanization (ed. Brenner, N.) 86–89 (jovis Verlag, 2014).

  • 67.

    McPhearson, T., Kremer, P. & Hamstead, Z. Mapping ecosystem services in new york city: applying a social-ecological approach in urban vacant land. Ecosyst. Service 11–26, https://doi.org/10.1016/j.ecoser.2013.06.005 (2013).

  • 68.

    Kremer, P., Hamstead, Z. & McPhearson, T. A social-ecological assessment of vacant lots in New York City. Landsc. Urban Plann. 218–233, https://doi.org/10.1016/j.landurbplan.2013.05.003 (2013).

  • 69.

    Burkholder, S. The new ecology of vacancy: rethinking land use in shrinking cities. Sustainability 4, 1154–1172 (2012).

    Article  Google Scholar 

  • 70.

    Bowman, A. O. M. & Pagano, M. A. Transforming America’s cities: policies and conditions of vacant land. Urban Affairs Rev. 35, 559–581 (2000).

    Article  Google Scholar 

  • 71.

    Kabisch N., et al. Nature-Based Solutions to Climate Change Adaptation in Urban Areas—Linkages Between Science, Policy and Practice. 91–109 (Springer, 2017).

  • 72.

    Schwarz, K., Berland, A. & Herrmann, D. L. Green, but not just? Rethinking environmental justice indicators in shrinking cities. Sustain. Cities Soc. 41, 816–821 (2018).

    Article  Google Scholar 

  • 73.

    McDonnell, M. J. & Hahs, A. K. The future of urban biodiversity research: moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 16, 397–409 (2013).

    Article  Google Scholar 

  • 74.

    Pickett, S. T. A., Kolasa, J. & Jones, C. G. Ecological Understanding: The Nature of Theory and the Theory of Nature (Academic Press, 2007).

  • 75.

    Depietri Y. & McPhearson T. Integrating the grey, green, and blue in cities: Nature-based solutions for climate change adaptation and risk reduction. In Nature-based solutions to climate change adaptation in urban areas. Theory and practice of urban sustainability transitions (eds. Kabisch N., Korn H., Stadler J. & Bonn A.) (Springer, Cham, 2017).


  • Source: Ecology - nature.com

    Keeping an eye on the fusion future

    Improving sanitation for the world’s most vulnerable people