Müller, F. Ituna and Thyridia: A remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879, 20–24 (1879).
Mallet, J. & Joron, M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 30, 201–233 (1999).
Google Scholar
Sherratt, T. N. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681–695 (2008).
Google Scholar
Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63–67 (2004).
Google Scholar
Mallet, L. & Barton, N. H. Strong natural selection in a warning colour hybrid zone. Evolution 43, 421–431 (1989).
Google Scholar
Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA 113, 2164–2169 (2016).
Google Scholar
Wilson, J. S., Williams, K. A., Forister, M. L., von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272. https://doi.org/10.1038/ncomms2275 (2012).
Google Scholar
Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).
Google Scholar
Bocek, M., Kusy, D., Motyka, M. & Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 16, 38. https://doi.org/10.1186/s12983-019-0335-8 (2019).
Google Scholar
Anzaldo, S. S., Wilson, J. S. & Franz, N. M. Phenotypic analysis of aposematic conoderine weevils (Coleoptera: Curculionidae: Conoderinae) supports the existence of three large mimicry complexes. Biol. J. Linn. Soc. 129, 728–739 (2020).
Google Scholar
Masek, M. et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae). Insects 9, 154. https://doi.org/10.3390/insects9040154 (2018).
Google Scholar
Kusy, D., Motyka, M., Bocek, M., Vogler, A. P. & Bocak, L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep. 8, 17084. https://doi.org/10.1038/s41598-018-35328-0 (2018).
Google Scholar
Linsley, E. G., Eisner, T. & Klots, A. B. Mimetic assemblages of sibling species of lycid beetles. Evolution 15, 15–29 (1961).
Google Scholar
Eisner, T., Kafatos, F. C. & Linsley, E. G. Lycid predation by mimetic adult Cerambycidae (Coleoptera). Evolution 16, 316–324 (1962).
Google Scholar
Dettner, K. Chemosystematics and evolution of beetle chemical defenses. Ann. Rev. Entomol. 32, 17–48 (1987).
Google Scholar
Malohlava, V. & Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800–4811 (2010).
Google Scholar
Kazantsev, S. V. & Telnov, D. A mimetic assemblage of net-winged beetles (Coleoptera: Lycidae) from West Papua. In Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea, Vol III (eds Telnov, D. et al.) 363–370 (The Entomological Society of Latvia, 2017).
Sklenarova, K., Chesters, D. & Bocak, L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS One 8, e67957. https://doi.org/10.1371/journal.pone.0067957 (2013).
Google Scholar
Li, Y., Gunter, N., Pang, H. & Bocak, L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 175, 59–72 (2015).
Google Scholar
Masek, M., Palata, V., Bray, T. C. & Bocak, L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PLoS One 10, e0123855. https://doi.org/10.1371/journal.pone.0123855 (2015).
Google Scholar
Bocakova, M., Bocak, L., Gimmel, M. L., Motyka, M. & Vogler, A. P. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool. Scr. 45, 9–21 (2016).
Google Scholar
Moore, B. P. & Brown, W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Biochem. 1, 493–499 (1981).
Google Scholar
Eisner, T. et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119 (2008).
Google Scholar
Kusy, D., Motyka, M., Bocek, M., Masek, M. & Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 44, 911–925 (2019).
Google Scholar
Blum, M. S. & Sannasi, A. Reflex bleeding in the lampyrid Photinus pyralis: Defensive function. J. Insect Physiol. 20, 451–460 (1974).
Google Scholar
Xinhua, F., Ohba, N., Meyer-Rochow, V. B., Yuyong, W. & Chaoliang, L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopt. Bull. 60, 207–215 (2006).
Google Scholar
Meinwald, J., Meinwald, Y. C., Calmers, A. M. & Eisner, T. Dihydromatricaria acid: Acetylenic acid secreted by soldier beetle. Science 160, 890–892 (1968).
Google Scholar
Moore, B. P. & Brown, W. V. Precoccinelline and related alcaloids in the Australian soldier beetle, Chauliognathus pulchellus (Coleoptera: Cantharidae). Ins. Biochem. 8, 393–395 (1978).
Google Scholar
Poinar, G. O. Jr., Marshall, C. J. & Buckley, R. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669 (2007).
Google Scholar
Rowe, C. & Guilford, T. The evolution of multimodal warning displays. Evol. Ecol. 13, 655–671 (1999).
Google Scholar
Young, D. K. & Fischer, R. L. The pupation of Calopteron terminale (Say) (Coleoptera: Lycidae). Coleopt. Bull. 26, 17–18 (1972).
Bocak, L. & Matsuda, K. Review of the immature stages of the family Lycidae (Insecta: Coleoptera). J. Nat. Hist 37, 1463–1507 (2003).
Google Scholar
Hall, D. W. & Branham, M. A. Aggregation of Calopteron discrepans (Coleoptera: Lycidae) larvae prior to pupation. Flor. Entomol. 91, 124–125 (2008).
Google Scholar
Gamberale, G. & Tullberg, B. S. Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B Biol. Sci. 265, 889–894 (1998).
Google Scholar
Svadová, K., Exnerová, A. & Štys, P. Gregariousness as a defence strategy of moderately defended prey: Experiments with Pyrrhocoris apterus and avian predators. Behaviour 151, 1617–1640 (2014).
Google Scholar
Mitchell, R. F. et al. Evidence that cerambycid beetles mimic vespid wasps in odor as well as appearance. J. Chem. Ecol. 43, 75–83 (2017).
Google Scholar
Speed, M. P. Warning signals, receiver psychology and predator memory. Anim. Behav. 60, 269–278 (2000).
Google Scholar
Speed, M. P. Can receiver psychology explain the evolution of aposematism?. Anim. Behav. 61, 205–216 (2001).
Google Scholar
Skelhorn, J., Holmes, G. G., Hossie, T. J. & Sherratt, T. N. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav. Ecol. 27, 141–147 (2016).
Google Scholar
Motyka, M., Kampova, L. & Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 8, 3744. https://doi.org/10.1038/s41598-018-22155-6 (2018).
Google Scholar
Motyka, M., Bocek, M., Kusy, D. & Bocak, L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 10, 11193. https://doi.org/10.1038/s41598-020-68027-w (2020).
Google Scholar
Bocak, L. & Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in southeast Asia. Evolution 64, 39–52 (2010).
Google Scholar
Bray, T. C. & Bocak, L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 6, 33579. https://doi.org/10.1038/srep33579 (2016).
Google Scholar
Jiruskova, A., Motyka, M., Bocek, M. & Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 7, e6511. https://doi.org/10.7717/peerj.6511 (2019).
Google Scholar
Endler, J. A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 31, 587–608 (1991).
Google Scholar
Arenas, L. M., Troscianko, J. & Stevens, M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2, 1–12 (2014).
Google Scholar
Mallet, J. & Gilbert, L. E. Why are there so many mimicry rings—correlations between habitats, behavior and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159–180 (1995).
CSIRO. The Insects of Australia (Melbourne University Press, 1991).
Lingafelter, S. W. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae). ZooKeys 258, 53–83 (2013).
Google Scholar
Perger, R. & Santos-Silva, A. A new lycid-like species of Iarucanga Martins & Galileo, 1991 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini) from the Bolivian Andes. J. Nat. Hist. 52, 2487–2495 (2018).
Google Scholar
Perger, R. & Santos-Silva, A. Addition to the known long-horned beetle fauna of the Bolivian Andes: A new lycid-like species of Mimolaia Bates, 1885 (Coleoptera, Cerambycidae, Lamiinae, Caliini). Zootaxa 4550, 295–300 (2019).
Google Scholar
Eisner, T. et al. Antifeedant action of z-dihydromatricaria acid from soldier beetles (Chauliognathus spp.). J. Chem. Ecol. 7, 1149–1158 (1981).
Google Scholar
Brown, W. V., Lacey, M. J. & Moore, B. P. Dihydromatricariate-based triglycerides, glyceride ethers, and waxes in the Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae). J. Chem. Ecol. 14, 411–423 (1988).
Google Scholar
Machado, V., Araujo, A. M., Serrano, J. & Galián, J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Gen. Mol. Biol. 27, 55–60 (2004).
Google Scholar
Long, S. M. et al. Firefly flashing and jumping spider predation. Anim. Behav. 83, 81–86 (2012).
Google Scholar
Eisner, T., Goetz, M. A., Hill, D. E., Smedley, S. R. & Meinwald, J. Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc. Natl. Acad. Sci USA 94, 9723–9728 (1997).
Google Scholar
Exnerová, A. et al. Importance of color in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linn. Soc. 88, 143–153 (2006).
Google Scholar
Wuster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B Biol. Sci. 271, 2495–2499 (2004).
Google Scholar
Speed, M. P. & Ruxton, G. D. How bright and how nasty: Explaining diversity in warning signal strength. Evolution 61, 623–635 (2007).
Google Scholar
Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362 (2009).
Google Scholar
Endler, J. A. & Mappes, J. The current and future state of animal coloration research. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160352 (2017).
Google Scholar
Edmunds, M. Why are there good and poor mimics?. Biol. J. Linn. Soc. 70, 459–466 (2000).
Google Scholar
Speed, M. P. & Ruxton, G. D. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 176, E1–E14 (2010).
Google Scholar
Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R. & Sherratt, T. N. A comparative analysis of the evolution of imperfect mimicry. Nature 483, 461–464 (2012).
Google Scholar
Kikuchi, D. W. & Pfennig, D. W. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 88, 297–315 (2013).
Google Scholar
Briolat, E. S. et al. Diversity in warning coloration: Selective paradox or the norm?. Biol. Rev. 94, 388–414 (2019).
Google Scholar
Robertson, A. R. The CIE 1976 color-difference formulae. Color Res. Appl. 2, 7–11 (1976).
Google Scholar
Bocak, L., Bocakova, M., Hunt, T. & Vogler, A. P. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B Biol. Sci. 275, 2015–2023 (2008).
Google Scholar
Bocak, L., Kundrata, R., Andújar-Fernández, C. & Vogler, A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 283, 20152350 (2016).
Google Scholar
Bininda-Emonds, O. R. P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 6, 156 (2005).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Kück, P. & Longo, G. C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81 (2014).
Google Scholar
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
Google Scholar
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).
Google Scholar
Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl. Acad. Sci. USA 91, 6491–6495 (1994).
Google Scholar
Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).
Google Scholar
Bocak, L., Li, Y. & Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 99, 149–155 (2019).
Google Scholar
Molino-Olmedo, F., Ferreira, V. S., Branham, M. A. & Ivie, M. A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. 111, 104452 (2020).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).
Google Scholar
Borges, R., Machado, J. P., Gomes, C., Rocha, A. P. & Antunes, A. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35, 1862–1869 (2019).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 57, 25–39 (2018).
Google Scholar
Kusy, D. et al. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae). Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa055 (2021).
Google Scholar
Endler, J. A. Frequency-dependent predation, crypsis and aposematic coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 505–523 (1988).
Google Scholar
Guilford, T. The evolution of conspicuous coloration. Am. Nat. 131, S7–S21 (1988).
Google Scholar
Gamberalle-Stille, G. Benefit by contrast: An experiment with live aposematic prey. Behav. Ecol. 12, 768–772 (2001).
Google Scholar
Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354 (2013).
Google Scholar
Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46 (2007).
Google Scholar
van Hateren, J. H., Ruttiger, L., Sun, H. & Lee, B. B. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22, 9945–9960 (2002).
Google Scholar
Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129, 215–222 (1993).
Google Scholar
Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA 98, 9181–9184 (2001).
Google Scholar
Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).
Google Scholar
Fabricant, S. A. & Herberstein, M. E. Hidden in plain orange: Aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 26, 38–44 (2015).
Google Scholar
Nielsen, M. E. & Mappes, J. Out in the open: Behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).
Google Scholar
Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2013).
Google Scholar
Guilford, T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 34, 286–288 (1986).
Google Scholar
Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A Opt. Imaging Sci. Vis. 22, 2060–2071 (2005).
Google Scholar
Rojas, B., Rautiala, P. & Mappes, J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 109, 164–172 (2014).
Google Scholar
Fennell, J. G., Talas, L., Baddeley, R. J., Cuthill, I. C. & Scott-Samuel, N. E. Optimizing colour for camouflage and visibility using deep learning: The effects of the environment and the observer’s visual system. J. R. Soc. Interf. 16, 20190183. https://doi.org/10.1098/rsif.2019.0183 (2019).
Google Scholar
Marples, N. M., Roper, T. J. & Harper, D. G. C. Responses of wild birds to novel prey: Evidence of dietary conservatism. Oikos 83, 161–165 (1998).
Google Scholar
Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).
Google Scholar
Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).
Google Scholar
Bocak, L. & Bocakova, M. Revision of the supergeneric classification of the family Lycidae (Coleoptera). Pol. Pism. Entomol. 59, 623–676 (1990).
Bocak, L. & Bocakova, M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera). Ann. Zool 58, 695–720 (2008).
Google Scholar
Kazantsev, S. V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron 17, 49–226 (2005).
Bocakova, M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae). Inst. Syst. Evol. 35, 437–447 (2005).
Google Scholar
Eisner, T. et al. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory “enticing” agent. Proc. Natl. Acad. Sci. USA 93, 6494–6498 (1996).
Google Scholar
Bocak, L. & Bocakova, M. Revision of the genus Dexoris C. O. Waterhouse (Coleoptera, Lycidae). Acta Entomol. Bohemoslov. 85, 194–204 (1988).
Bocak, L., Grebennikov, V. V. & Masek, M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa 3721, 495–500 (2013).
Google Scholar
True, J. R. Insect melanism: The molecules matter. Trend. Ecol. Evol. 18, 640–647 (2003).
Google Scholar
Shamim, G., Ranjan, S. K., Pandey, D. M. & Ramani, R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 111, 149–164 (2014).
Google Scholar
Sillén-Tullberg, B. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution 42, 293–305 (1988).
Google Scholar
Gagliardo, A. & Guilford, T. Why do warning-coloured prey live gregariously?. Proc. R. Soc. Lond. B Biol. Sci. 251, 69–74 (1993).
Google Scholar
Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).
Google Scholar
Yachi, S. & Higashi, M. The evolution of warning signals. Nature 394, 882–884 (1998).
Google Scholar
Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change?. Nature 397, 249–251 (1999).
Google Scholar
Guilford, T., Nicol, C., Rotschild, M. & Moore, B. P. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. 31, 113–128 (1987).
Google Scholar
Arenas, L. M., Walter, D. & Stevens, M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 5, 11021. https://doi.org/10.1038/srep11021 (2015).
Google Scholar
Hämäläinen, L., Mappes, J., Rowland, H. M., Teichmann, M. & Thorogood, R. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153–1164 (2020).
Google Scholar
Landova, E., Hotova Svadova, K., Fuchs, R., Stys, P. & Exnerova, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn. 20, 855–866 (2017).
Google Scholar
Leimar, O. & Tuomi, J. Synergistic selection and graded traits. Evol. Ecol. 12, 59–71 (1998).
Google Scholar
Gompert, Z., Willmott, K. R. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46 (2011).
Google Scholar
Willmott, K. R., Willmott, J. C. R., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: Optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170744 (2017).
Google Scholar
Van Belleghem, S. M., Roman, P. A. A., Gutierrez, H. C., Counterman, B. A. & Papa, R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B Biol. Sci. 287, 20201267 (2020).
Google Scholar
Bocek, M. & Bocak, L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae). Zookeys 593, 15–35 (2016).
Google Scholar
Do Nascimento, E. A. & Bocakova, M. A revision of the Neotropical genus Eurrhacus (Coleoptera: Lycidae). Ann. Zool. 67, 689–697 (2017).
Google Scholar
Source: Ecology - nature.com