in

Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions

  • 1.

    Müller, F. Ituna and Thyridia: A remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879, 20–24 (1879).

    Google Scholar 

  • 2.

    Mallet, J. & Joron, M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 30, 201–233 (1999).

    Article 

    Google Scholar 

  • 3.

    Sherratt, T. N. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681–695 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63–67 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Mallet, L. & Barton, N. H. Strong natural selection in a warning colour hybrid zone. Evolution 43, 421–431 (1989).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA 113, 2164–2169 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Wilson, J. S., Williams, K. A., Forister, M. L., von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272. https://doi.org/10.1038/ncomms2275 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    Bocek, M., Kusy, D., Motyka, M. & Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 16, 38. https://doi.org/10.1186/s12983-019-0335-8 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Anzaldo, S. S., Wilson, J. S. & Franz, N. M. Phenotypic analysis of aposematic conoderine weevils (Coleoptera: Curculionidae: Conoderinae) supports the existence of three large mimicry complexes. Biol. J. Linn. Soc. 129, 728–739 (2020).

    Article 

    Google Scholar 

  • 11.

    Masek, M. et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae). Insects 9, 154. https://doi.org/10.3390/insects9040154 (2018).

    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 12.

    Kusy, D., Motyka, M., Bocek, M., Vogler, A. P. & Bocak, L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep. 8, 17084. https://doi.org/10.1038/s41598-018-35328-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Linsley, E. G., Eisner, T. & Klots, A. B. Mimetic assemblages of sibling species of lycid beetles. Evolution 15, 15–29 (1961).

    Article 

    Google Scholar 

  • 14.

    Eisner, T., Kafatos, F. C. & Linsley, E. G. Lycid predation by mimetic adult Cerambycidae (Coleoptera). Evolution 16, 316–324 (1962).

    Article 

    Google Scholar 

  • 15.

    Dettner, K. Chemosystematics and evolution of beetle chemical defenses. Ann. Rev. Entomol. 32, 17–48 (1987).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Malohlava, V. & Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800–4811 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Kazantsev, S. V. & Telnov, D. A mimetic assemblage of net-winged beetles (Coleoptera: Lycidae) from West Papua. In Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea, Vol III (eds Telnov, D. et al.) 363–370 (The Entomological Society of Latvia, 2017).

    Google Scholar 

  • 18.

    Sklenarova, K., Chesters, D. & Bocak, L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS One 8, e67957. https://doi.org/10.1371/journal.pone.0067957 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Li, Y., Gunter, N., Pang, H. & Bocak, L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 175, 59–72 (2015).

    Article 

    Google Scholar 

  • 20.

    Masek, M., Palata, V., Bray, T. C. & Bocak, L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PLoS One 10, e0123855. https://doi.org/10.1371/journal.pone.0123855 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Bocakova, M., Bocak, L., Gimmel, M. L., Motyka, M. & Vogler, A. P. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool. Scr. 45, 9–21 (2016).

    Article 

    Google Scholar 

  • 22.

    Moore, B. P. & Brown, W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Biochem. 1, 493–499 (1981).

    Article 

    Google Scholar 

  • 23.

    Eisner, T. et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Kusy, D., Motyka, M., Bocek, M., Masek, M. & Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 44, 911–925 (2019).

    Article 

    Google Scholar 

  • 25.

    Blum, M. S. & Sannasi, A. Reflex bleeding in the lampyrid Photinus pyralis: Defensive function. J. Insect Physiol. 20, 451–460 (1974).

    Article 

    Google Scholar 

  • 26.

    Xinhua, F., Ohba, N., Meyer-Rochow, V. B., Yuyong, W. & Chaoliang, L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopt. Bull. 60, 207–215 (2006).

    Article 

    Google Scholar 

  • 27.

    Meinwald, J., Meinwald, Y. C., Calmers, A. M. & Eisner, T. Dihydromatricaria acid: Acetylenic acid secreted by soldier beetle. Science 160, 890–892 (1968).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Moore, B. P. & Brown, W. V. Precoccinelline and related alcaloids in the Australian soldier beetle, Chauliognathus pulchellus (Coleoptera: Cantharidae). Ins. Biochem. 8, 393–395 (1978).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Poinar, G. O. Jr., Marshall, C. J. & Buckley, R. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Rowe, C. & Guilford, T. The evolution of multimodal warning displays. Evol. Ecol. 13, 655–671 (1999).

    Article 

    Google Scholar 

  • 31.

    Young, D. K. & Fischer, R. L. The pupation of Calopteron terminale (Say) (Coleoptera: Lycidae). Coleopt. Bull. 26, 17–18 (1972).

    Google Scholar 

  • 32.

    Bocak, L. & Matsuda, K. Review of the immature stages of the family Lycidae (Insecta: Coleoptera). J. Nat. Hist 37, 1463–1507 (2003).

    Article 

    Google Scholar 

  • 33.

    Hall, D. W. & Branham, M. A. Aggregation of Calopteron discrepans (Coleoptera: Lycidae) larvae prior to pupation. Flor. Entomol. 91, 124–125 (2008).

    Article 

    Google Scholar 

  • 34.

    Gamberale, G. & Tullberg, B. S. Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B Biol. Sci. 265, 889–894 (1998).

    Article 

    Google Scholar 

  • 35.

    Svadová, K., Exnerová, A. & Štys, P. Gregariousness as a defence strategy of moderately defended prey: Experiments with Pyrrhocoris apterus and avian predators. Behaviour 151, 1617–1640 (2014).

    Article 

    Google Scholar 

  • 36.

    Mitchell, R. F. et al. Evidence that cerambycid beetles mimic vespid wasps in odor as well as appearance. J. Chem. Ecol. 43, 75–83 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Speed, M. P. Warning signals, receiver psychology and predator memory. Anim. Behav. 60, 269–278 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Speed, M. P. Can receiver psychology explain the evolution of aposematism?. Anim. Behav. 61, 205–216 (2001).

    PubMed 
    Article 

    Google Scholar 

  • 39.

    Skelhorn, J., Holmes, G. G., Hossie, T. J. & Sherratt, T. N. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav. Ecol. 27, 141–147 (2016).

    Article 

    Google Scholar 

  • 40.

    Motyka, M., Kampova, L. & Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 8, 3744. https://doi.org/10.1038/s41598-018-22155-6 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Motyka, M., Bocek, M., Kusy, D. & Bocak, L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 10, 11193. https://doi.org/10.1038/s41598-020-68027-w (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Bocak, L. & Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in southeast Asia. Evolution 64, 39–52 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Bray, T. C. & Bocak, L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 6, 33579. https://doi.org/10.1038/srep33579 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Jiruskova, A., Motyka, M., Bocek, M. & Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 7, e6511. https://doi.org/10.7717/peerj.6511 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Endler, J. A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 31, 587–608 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Arenas, L. M., Troscianko, J. & Stevens, M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2, 1–12 (2014).

    Article 

    Google Scholar 

  • 47.

    Mallet, J. & Gilbert, L. E. Why are there so many mimicry rings—correlations between habitats, behavior and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159–180 (1995).

    Google Scholar 

  • 48.

    CSIRO. The Insects of Australia (Melbourne University Press, 1991).

    Google Scholar 

  • 49.

    Lingafelter, S. W. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae). ZooKeys 258, 53–83 (2013).

    Article 

    Google Scholar 

  • 50.

    Perger, R. & Santos-Silva, A. A new lycid-like species of Iarucanga Martins & Galileo, 1991 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini) from the Bolivian Andes. J. Nat. Hist. 52, 2487–2495 (2018).

    Article 

    Google Scholar 

  • 51.

    Perger, R. & Santos-Silva, A. Addition to the known long-horned beetle fauna of the Bolivian Andes: A new lycid-like species of Mimolaia Bates, 1885 (Coleoptera, Cerambycidae, Lamiinae, Caliini). Zootaxa 4550, 295–300 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 52.

    Eisner, T. et al. Antifeedant action of z-dihydromatricaria acid from soldier beetles (Chauliognathus spp.). J. Chem. Ecol. 7, 1149–1158 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Brown, W. V., Lacey, M. J. & Moore, B. P. Dihydromatricariate-based triglycerides, glyceride ethers, and waxes in the Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae). J. Chem. Ecol. 14, 411–423 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Machado, V., Araujo, A. M., Serrano, J. & Galián, J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Gen. Mol. Biol. 27, 55–60 (2004).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Long, S. M. et al. Firefly flashing and jumping spider predation. Anim. Behav. 83, 81–86 (2012).

    Article 

    Google Scholar 

  • 56.

    Eisner, T., Goetz, M. A., Hill, D. E., Smedley, S. R. & Meinwald, J. Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc. Natl. Acad. Sci USA 94, 9723–9728 (1997).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Exnerová, A. et al. Importance of color in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linn. Soc. 88, 143–153 (2006).

    Article 

    Google Scholar 

  • 58.

    Wuster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B Biol. Sci. 271, 2495–2499 (2004).

    Article 

    Google Scholar 

  • 59.

    Speed, M. P. & Ruxton, G. D. How bright and how nasty: Explaining diversity in warning signal strength. Evolution 61, 623–635 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362 (2009).

    Article 

    Google Scholar 

  • 61.

    Endler, J. A. & Mappes, J. The current and future state of animal coloration research. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160352 (2017).

    Article 

    Google Scholar 

  • 62.

    Edmunds, M. Why are there good and poor mimics?. Biol. J. Linn. Soc. 70, 459–466 (2000).

    Article 

    Google Scholar 

  • 63.

    Speed, M. P. & Ruxton, G. D. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 176, E1–E14 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R. & Sherratt, T. N. A comparative analysis of the evolution of imperfect mimicry. Nature 483, 461–464 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Kikuchi, D. W. & Pfennig, D. W. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 88, 297–315 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 66.

    Briolat, E. S. et al. Diversity in warning coloration: Selective paradox or the norm?. Biol. Rev. 94, 388–414 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 67.

    Robertson, A. R. The CIE 1976 color-difference formulae. Color Res. Appl. 2, 7–11 (1976).

    Article 

    Google Scholar 

  • 68.

    Bocak, L., Bocakova, M., Hunt, T. & Vogler, A. P. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B Biol. Sci. 275, 2015–2023 (2008).

    Article 

    Google Scholar 

  • 69.

    Bocak, L., Kundrata, R., Andújar-Fernández, C. & Vogler, A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 283, 20152350 (2016).

    Article 
    CAS 

    Google Scholar 

  • 70.

    Bininda-Emonds, O. R. P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 6, 156 (2005).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Kück, P. & Longo, G. C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 76.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl. Acad. Sci. USA 91, 6491–6495 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 78.

    Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Bocak, L., Li, Y. & Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 99, 149–155 (2019).

    Article 

    Google Scholar 

  • 80.

    Molino-Olmedo, F., Ferreira, V. S., Branham, M. A. & Ivie, M. A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. 111, 104452 (2020).

    Article 

    Google Scholar 

  • 81.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Borges, R., Machado, J. P., Gomes, C., Rocha, A. P. & Antunes, A. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35, 1862–1869 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 57, 25–39 (2018).

    Article 

    Google Scholar 

  • 85.

    Kusy, D. et al. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae). Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa055 (2021).

    Article 

    Google Scholar 

  • 86.

    Endler, J. A. Frequency-dependent predation, crypsis and aposematic coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 505–523 (1988).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Guilford, T. The evolution of conspicuous coloration. Am. Nat. 131, S7–S21 (1988).

    Article 

    Google Scholar 

  • 88.

    Gamberalle-Stille, G. Benefit by contrast: An experiment with live aposematic prey. Behav. Ecol. 12, 768–772 (2001).

    Article 

    Google Scholar 

  • 89.

    Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354 (2013).

    Article 

    Google Scholar 

  • 90.

    Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46 (2007).

    Article 

    Google Scholar 

  • 91.

    van Hateren, J. H., Ruttiger, L., Sun, H. & Lee, B. B. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22, 9945–9960 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129, 215–222 (1993).

    Article 

    Google Scholar 

  • 93.

    Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA 98, 9181–9184 (2001).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 94.

    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 95.

    Fabricant, S. A. & Herberstein, M. E. Hidden in plain orange: Aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 26, 38–44 (2015).

    Article 

    Google Scholar 

  • 96.

    Nielsen, M. E. & Mappes, J. Out in the open: Behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2013).

    Article 

    Google Scholar 

  • 98.

    Guilford, T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 34, 286–288 (1986).

    Article 

    Google Scholar 

  • 99.

    Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A Opt. Imaging Sci. Vis. 22, 2060–2071 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 100.

    Rojas, B., Rautiala, P. & Mappes, J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 109, 164–172 (2014).

    Article 

    Google Scholar 

  • 101.

    Fennell, J. G., Talas, L., Baddeley, R. J., Cuthill, I. C. & Scott-Samuel, N. E. Optimizing colour for camouflage and visibility using deep learning: The effects of the environment and the observer’s visual system. J. R. Soc. Interf. 16, 20190183. https://doi.org/10.1098/rsif.2019.0183 (2019).

    CAS 
    Article 

    Google Scholar 

  • 102.

    Marples, N. M., Roper, T. J. & Harper, D. G. C. Responses of wild birds to novel prey: Evidence of dietary conservatism. Oikos 83, 161–165 (1998).

    Article 

    Google Scholar 

  • 103.

    Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 104.

    Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).

    Article 

    Google Scholar 

  • 105.

    Bocak, L. & Bocakova, M. Revision of the supergeneric classification of the family Lycidae (Coleoptera). Pol. Pism. Entomol. 59, 623–676 (1990).

    Google Scholar 

  • 106.

    Bocak, L. & Bocakova, M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera). Ann. Zool 58, 695–720 (2008).

    Article 

    Google Scholar 

  • 107.

    Kazantsev, S. V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron 17, 49–226 (2005).

    Google Scholar 

  • 108.

    Bocakova, M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae). Inst. Syst. Evol. 35, 437–447 (2005).

    Article 

    Google Scholar 

  • 109.

    Eisner, T. et al. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory “enticing” agent. Proc. Natl. Acad. Sci. USA 93, 6494–6498 (1996).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 110.

    Bocak, L. & Bocakova, M. Revision of the genus Dexoris C. O. Waterhouse (Coleoptera, Lycidae). Acta Entomol. Bohemoslov. 85, 194–204 (1988).

    Google Scholar 

  • 111.

    Bocak, L., Grebennikov, V. V. & Masek, M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa 3721, 495–500 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 112.

    True, J. R. Insect melanism: The molecules matter. Trend. Ecol. Evol. 18, 640–647 (2003).

    Article 

    Google Scholar 

  • 113.

    Shamim, G., Ranjan, S. K., Pandey, D. M. & Ramani, R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 111, 149–164 (2014).

    CAS 
    Article 

    Google Scholar 

  • 114.

    Sillén-Tullberg, B. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution 42, 293–305 (1988).

    PubMed 
    Article 

    Google Scholar 

  • 115.

    Gagliardo, A. & Guilford, T. Why do warning-coloured prey live gregariously?. Proc. R. Soc. Lond. B Biol. Sci. 251, 69–74 (1993).

    ADS 
    Article 

    Google Scholar 

  • 116.

    Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 117.

    Yachi, S. & Higashi, M. The evolution of warning signals. Nature 394, 882–884 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 118.

    Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change?. Nature 397, 249–251 (1999).

    ADS 
    Article 

    Google Scholar 

  • 119.

    Guilford, T., Nicol, C., Rotschild, M. & Moore, B. P. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. 31, 113–128 (1987).

    Article 

    Google Scholar 

  • 120.

    Arenas, L. M., Walter, D. & Stevens, M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 5, 11021. https://doi.org/10.1038/srep11021 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 121.

    Hämäläinen, L., Mappes, J., Rowland, H. M., Teichmann, M. & Thorogood, R. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153–1164 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Landova, E., Hotova Svadova, K., Fuchs, R., Stys, P. & Exnerova, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn. 20, 855–866 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 123.

    Leimar, O. & Tuomi, J. Synergistic selection and graded traits. Evol. Ecol. 12, 59–71 (1998).

    Article 

    Google Scholar 

  • 124.

    Gompert, Z., Willmott, K. R. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 125.

    Willmott, K. R., Willmott, J. C. R., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: Optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170744 (2017).

    Article 

    Google Scholar 

  • 126.

    Van Belleghem, S. M., Roman, P. A. A., Gutierrez, H. C., Counterman, B. A. & Papa, R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B Biol. Sci. 287, 20201267 (2020).

    Article 
    CAS 

    Google Scholar 

  • 127.

    Bocek, M. & Bocak, L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae). Zookeys 593, 15–35 (2016).

    Article 

    Google Scholar 

  • 128.

    Do Nascimento, E. A. & Bocakova, M. A revision of the Neotropical genus Eurrhacus (Coleoptera: Lycidae). Ann. Zool. 67, 689–697 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Study predicts the oceans will start emitting ozone-depleting CFCs

    Understanding imperfections in fusion magnets