in

Constraints and enablers for increasing carbon storage in the terrestrial biosphere

  • 1.

    Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (World Meteorological Organization, 2018).

  • 2.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Article 

    Google Scholar 

  • 3.

    Minx, J. C. et al. Negative emissions — part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article 

    Google Scholar 

  • 4.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    Article 

    Google Scholar 

  • 5.

    Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 37 (2021).

    Article 

    Google Scholar 

  • 6.

    National Academies of Sciences, Engineering, and Medicine (NASEM). Negative Emissions Technologies and Reliable Sequestration (The National Academies Press, 2019).

    Google Scholar 

  • 7.

    IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393–1394 (1998).

    Article 

    Google Scholar 

  • 8.

    Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).

    Article 

    Google Scholar 

  • 9.

    Intergovernmental Panel on Climate Change (IPCC). Proceedings of the IPCC Conference on Tropical Forestry Response Options to Global Climate Change (US Environmental Protection Agency, 1990).

  • 10.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Article 

    Google Scholar 

  • 11.

    Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 7, 12717 (2016).

    Article 

    Google Scholar 

  • 12.

    Putz, F. E. et al. Improved tropical forest management for carbon retention. PLoS Biol. 6, e166 (2008).

    Article 

    Google Scholar 

  • 13.

    Moomaw, W. R., Masino, S. A. & Faison, E. K. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. For. Glob. Change 2, 27 (2019).

    Article 

    Google Scholar 

  • 14.

    Nolan, R. H. et al. Safeguarding reforestation efforts against changes in climate and disturbance regimes. For. Ecol. Manag. 424, 458–467 (2018).

    Article 

    Google Scholar 

  • 15.

    Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).

    Article 

    Google Scholar 

  • 16.

    Smith, P. et al. Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Glob. Change Biol. 18, 2089–2101 (2012).

    Article 

    Google Scholar 

  • 17.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article 

    Google Scholar 

  • 18.

    Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Article 

    Google Scholar 

  • 19.

    Paustian, K. et al. Soil C sequestration as a biological negative emission strategy. Front. Clim. 1, 8 (2019).

    Article 

    Google Scholar 

  • 20.

    Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 27, 1518–1546 (2021).

    Article 

    Google Scholar 

  • 21.

    World Resources Institute. Global Forest Watch https://www.wri.org/our-work/project/global-forest-watch (2014).

  • 22.

    Forest Trends’ Ecosystem Marketplace. Financing Emissions Reductions for the Future: State of the Voluntary Carbon Markets 2019 (Forest Trends, 2019).

  • 23.

    Forest Trends’ Ecosystem Marketplace. Fertile Ground: State of Forest Carbon Finance 2017 (Forest Trends, 2017).

  • 24.

    United Nations Framework Convention on Climate Change (UNFCCC). The Clean Development Mechanism Project Search https://cdm.unfccc.int/Projects/projsearch.html.

  • 25.

    Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N. & Guillén-Gosálbez, G. Equity in allocating carbon dioxide removal quotas. Nat. Clim. Change 10, 640–646 (2020).

    Article 

    Google Scholar 

  • 26.

    Mulligan, J. A. et al. CarbonShot: Federal Policy Options for Carbon Removal in the United States (World Resources Institute, 2020).

  • 27.

    Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article 

    Google Scholar 

  • 28.

    Cameron, D. R., Marvin, D. C., Remucal, J. M. & Passero, M. C. Ecosystem management and land conservation can substantially contribute to California’s climate mitigation goals. Proc. Natl Acad. Sci. USA 114, 12833–12838 (2017).

    Article 

    Google Scholar 

  • 29.

    Baker, S. E. et al. Getting to Neutral: Options for Negative Carbon Emissions in California (Lawrence Livermore National Laboratory, 2020).

  • 30.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Article 

    Google Scholar 

  • 31.

    Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis Ch. 3 (eds Houghton, J. T. et al.) 185–237 (World Meteorological Organization, 2001).

  • 32.

    Mackey, B. et al. Untangling the confusion around land carbon science and climate change mitigation policy. Nat. Clim. Change 3, 552–557 (2013).

    Article 

    Google Scholar 

  • 33.

    Hurteau, M. D., Koch, G. W. & Hungate, B. A. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front. Ecol. Environ. 6, 493–498 (2008).

    Article 

    Google Scholar 

  • 34.

    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).

    Article 

    Google Scholar 

  • 35.

    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).

    Article 

    Google Scholar 

  • 36.

    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article 

    Google Scholar 

  • 37.

    DeFries, R. S., Field, C. B., Fung, I., Collatz, G. J. & Bounoua, L. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob. Biogeochem. Cycles 13, 803–815 (1999).

    Article 

    Google Scholar 

  • 38.

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Article 

    Google Scholar 

  • 39.

    Erb, K.-H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).

    Article 

    Google Scholar 

  • 40.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article 

    Google Scholar 

  • 41.

    Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article 

    Google Scholar 

  • 42.

    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).

    Article 

    Google Scholar 

  • 43.

    Kondo, M. et al. Plant regrowth as a driver of recent enhancement of terrestrial CO2 uptake. Geophys. Res. Lett. 45, 4820–4830 (2018).

    Article 

    Google Scholar 

  • 44.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 

    Google Scholar 

  • 45.

    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 119, 4382–4387 (2019).

    Article 

    Google Scholar 

  • 46.

    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    Article 

    Google Scholar 

  • 47.

    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article 

    Google Scholar 

  • 48.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 

    Google Scholar 

  • 49.

    Griscom, B. W. et al. National mitigation potential from natural climate solutions in the tropics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190126 (2020).

    Article 

    Google Scholar 

  • 50.

    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article 

    Google Scholar 

  • 51.

    Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).

    Article 

    Google Scholar 

  • 52.

    Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).

    Article 

    Google Scholar 

  • 53.

    Jones, C. D. et al. C4MIP — the coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geosci. Model Dev. 9, 2853–2880 (2016).

    Article 

    Google Scholar 

  • 54.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article 

    Google Scholar 

  • 55.

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article 

    Google Scholar 

  • 56.

    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 

    Google Scholar 

  • 57.

    Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).

    Article 

    Google Scholar 

  • 58.

    Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).

    Article 

    Google Scholar 

  • 59.

    Baldocchi, D. & Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2018).

    Article 

    Google Scholar 

  • 60.

    Gómez-González, S., Ochoa-Hueso, R. & Pausas, J. G. Afforestation falls short as a biodiversity strategy. Science 368, 1439 (2020).

    Article 

    Google Scholar 

  • 61.

    Bellamy, R. & Osaka, S. Unnatural climate solutions. Nat. Clim. Change 10, 98–99 (2020).

    Article 

    Google Scholar 

  • 62.

    Indigo Ag. Indigo launches The Terraton Initiative. https://www.indigoag.com/en-au/pages/news/indigo-launches-the-terraton-initiative (2019).

  • 63.

    Schlesinger, W. H. & Amundson, R. Managing for soil carbon sequestration: Let’s get realistic. Glob. Change Biol. 25, 386–389 (2019).

    Article 

    Google Scholar 

  • 64.

    Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article 

    Google Scholar 

  • 65.

    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Article 

    Google Scholar 

  • 66.

    Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Article 

    Google Scholar 

  • 67.

    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Article 

    Google Scholar 

  • 68.

    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PloS ONE 13, e0213368 (2019).

    Article 

    Google Scholar 

  • 69.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 

    Google Scholar 

  • 70.

    Zhang, Q. et al. Reforestation and surface cooling in temperate zones: mechanisms and implications. Glob. Change Biol. 26, 3384–3401 (2020).

    Article 

    Google Scholar 

  • 71.

    California Air Resources Board. Compliance Offset Program. https://ww2.arb.ca.gov/our-work/programs/compliance-offset-program (2013).

  • 72.

    Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (2019).

  • 73.

    Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H. & Baldocchi, D. D. A biogeochemical compromise: the high methane cost of sequestering carbon in restored wetlands. Geophys. Res. Lett. 45, 6081–6091 (2018).

    Article 

    Google Scholar 

  • 74.

    CarbonPlan Team. The cost of temporary carbon removal (2020).

  • 75.

    Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).

    Article 

    Google Scholar 

  • 76.

    Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. Past, present, and future of biochar. Biochar 1, 75–87 (2019).

    Article 

    Google Scholar 

  • 77.

    Nemet, G. F. et al. Negative emissions — part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

    Article 

    Google Scholar 

  • 78.

    Chazdon, R. & Brancalion, P. Restoring forests as a means to many ends. Science 365, 24–25 (2019).

    Article 

    Google Scholar 

  • 79.

    Kalt, G. et al. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice. GCB Bioenergy 11, 1283–1297 (2019).

    Article 

    Google Scholar 

  • 80.

    Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190120 (2020).

    Article 

    Google Scholar 

  • 81.

    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).

    Article 

    Google Scholar 

  • 82.

    Dass, P., Houlton, B. Z., Wang, Y. & Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 13, 074027 (2018).

    Article 

    Google Scholar 

  • 83.

    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    Article 

    Google Scholar 

  • 84.

    Buck, H. J. After Geoengineering: Climate Tragedy, Repair, and Restoration (Verso Books, 2019).

  • 85.

    House, J. I., Prentice, I. C. & Le Quere, C. Maximum impacts of future reforestation or deforestation on atmospheric CO2. Glob. Change Biol. 8, 1047–1052 (2002).

    Article 

    Google Scholar 

  • 86.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    Article 

    Google Scholar 

  • 87.

    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).

    Article 

    Google Scholar 

  • 88.

    Smith, P. et al. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals. Glob. Change Biol. 19, 2285–2302 (2013).

    Article 

    Google Scholar 

  • 89.

    Popp, A. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ. Res. Lett. 6, 034017 (2011).

    Article 

    Google Scholar 

  • 90.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article 

    Google Scholar 

  • 91.

    Turner, P. A., Field, C. B., Lobell, D. B., Sanchez, D. L. & Mach, K. J. Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat. Sustain. 1, 240–245 (2018).

    Article 

    Google Scholar 

  • 92.

    Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).

    Article 

    Google Scholar 

  • 93.

    Bell, S., Barriocanal, C., Terrer, C. & Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 108, 104–111 (2020).

    Article 

    Google Scholar 

  • 94.

    FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity, and people. http://www.fao.org/3/ca8642en/ca8642en.pdf (2020).

  • 95.

    The Food and Land Use Coalition. Growing Better: Ten Critical Transitions to Transform Food and Land Use. https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf (2019).

  • 96.

    Smith, P. et al. Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu. Rev. Environ. Resour. 44, 255–286 (2019).

    Article 

    Google Scholar 

  • 97.

    Dorner, P. & Thiesenhusen, W. Land Tenure and Deforestation: Interactions and Environmental Implications (United Nations Research Institute for Social Development, 1992).

  • 98.

    Ferreira, S. Deforestation, property rights, and international trade. Land Econ. 80, 174–193 (2004).

    Article 

    Google Scholar 

  • 99.

    Robinson, B. E., Holland, M. B. & Naughton-Treves, L. Does secure land tenure save forests? A meta-analysis of the relationship between land tenure and tropical deforestation. Glob. Environ. Change 29, 281–293 (2014).

    Article 

    Google Scholar 

  • 100.

    Laurance, W. F. Reflections on the tropical deforestation crisis. Biol. Conserv. 91, 109–117 (1999).

    Article 

    Google Scholar 

  • 101.

    Murtazashvili, I., Murtazashvili, J. & Salahodjaev, R. Trust and deforestation: a cross-country comparison. For. Policy Econ. 101, 111–119 (2019).

    Article 

    Google Scholar 

  • 102.

    Koyuncu, C. & Yilmaz, R. The impact of corruption on deforestation: a cross-country evidence. J. Dev. Areas 42, 213–222 (2009).

    Article 

    Google Scholar 

  • 103.

    Pailler, S. Re-election incentives and deforestation cycles in the Brazilian Amazon. J. Environ. Econ. Manag. 88, 345–365 (2018).

    Article 

    Google Scholar 

  • 104.

    United Nations Framework Convention on Climate Change (UNFCCC). Decision 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries (2009).

  • 105.

    Anderson, C. M., Field, C. B. & Mach, K. J. Forest offsets partner climate-change mitigation with conservation. Front. Ecol. Environ. 15, 359–365 (2017).

    Article 

    Google Scholar 

  • 106.

    Merenlender, A. M., Huntsinger, L., Guthey, G. & Fairfax, S. K. Land trusts and conservation easements: who is conserving what for whom. Conserv. Biol. 18, 65–75 (2004).

    Article 

    Google Scholar 

  • 107.

    Alix-Garcia, J. & Wolff, H. Payment for ecosystem services from forests. Annu. Rev. Resour. Econ. 6, 361–380 (2014).

    Article 

    Google Scholar 

  • 108.

    Jayachandran, S. et al. Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation. Science 357, 267–273 (2017).

    Article 

    Google Scholar 

  • 109.

    Biggs, E. M. et al. Sustainable development and the water–energy–food nexus: a perspective on livelihoods. Environ. Sci. Policy 54, 389–397 (2015).

    Article 

    Google Scholar 

  • 110.

    Buchner, B. et al. Global Landscape of Climate Finance 2019 (Climate Policy Initiative, 2019).

  • 111.

    The Food and Land Use Coalition. Nature for Net-Zero: consultation document on the need to raise corporate ambition towards nature-based net-zero emissions (2020).

  • 112.

    Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).

    Article 

    Google Scholar 

  • 113.

    Schimel, D. & Schneider, F. D., JPL Carbon and Ecosystem Participants. Flux towers in the sky: global ecology from space. New Phytol. 224, 570–584 (2019).

    Article 

    Google Scholar 

  • 114.

    Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).

    Article 

    Google Scholar 

  • 115.

    Marland, G., Fruit, K. & Sedjo, R. Accounting for sequestered carbon: the question of permanence. Environ. Sci. Policy 4, 259–268 (2001).

    Article 

    Google Scholar 

  • 116.

    Sedjo, R. A., Marland, G. & Fruit, K. Renting carbon offsets: the question of permanence. Resources for the Future Manuscript 12 pp (2001).

  • 117.

    Marland, G. & Marland, E. Trading permanent and temporary carbon emissions credits. Clim. Change 95, 465 (2009).

    Article 

    Google Scholar 

  • 118.

    van Oosterzee, P., Blignaut, J. & Bradshaw, C. J. A. iREDD hedges against avoided deforestation’s unholy trinity of leakage, permanence and additionality. Conserv. Lett. 5, 266–273 (2012).

    Article 

    Google Scholar 

  • 119.

    May, P. J. Policy learning and failure. J. Public Policy 12, 331–354 (1992).

    Article 

    Google Scholar 

  • 120.

    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52, 143–150 (2002).

    Article 

    Google Scholar 

  • 121.

    Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Change 10, 842–844 (2020).

    Article 

    Google Scholar 

  • 122.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article 

    Google Scholar 

  • 123.

    Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).

    Article 

    Google Scholar 

  • 124.

    Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).

    Article 

    Google Scholar 

  • 125.

    Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nat. Geosci. 4, 514–518 (2011).

    Article 

    Google Scholar 

  • 126.

    National Academies of Sciences, Engineering, and Medicine (NASEM). Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).

  • 127.

    Chabbi, A. et al. Aligning agriculture and climate policy. Nat. Clim. Change 7, 307–309 (2017).

    Article 

    Google Scholar 

  • 128.

    Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Clim. Change 109, 745–790 (2011).

    Article 

    Google Scholar 

  • 129.

    Houghton, R. A., Unruh, J. D. & Lefebvre, P. A. Current land cover in the tropics and its potential for sequestering carbon. Glob. Biogeochem. Cycles 7, 305–320 (1993).

    Article 

    Google Scholar 

  • 130.

    Houghton, R. A. & Nassikas, A. A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Change Biol. 24, 350–359 (2018).

    Article 

    Google Scholar 

  • 131.

    Busch, J. et al. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 9, 463–466 (2019).

    Article 

    Google Scholar 

  • 132.

    Nilsson, S. & Schopfhauser, W. The carbon-sequestration potential of a global afforestation program. Clim. Change 30, 267–293 (1995).

    Article 

    Google Scholar 

  • 133.

    Winjum, J. K., Dixon, R. K. & Schroeder, P. E. Estimating the global potential of forest and agroforest management practices to sequester carbon. Water Air Soil Pollut. 64, 213–227 (1992).

    Article 

    Google Scholar 

  • 134.

    Sohngen, B. & Sedjo, R. Carbon sequestration in global forests under different carbon price regimes. Energy J. 27, 109–126 (2006).

    Google Scholar 

  • 135.

    Mayer, A., Hausfather, Z., Jones, A. D. & Silver, W. L. The potential of agricultural land management to contribute to lower global surface temperatures. Sci. Adv. 4, eaaq0932 (2018).

    Article 

    Google Scholar 

  • 136.

    van Minnen, J. G., Strengers, B. J., Eickhout, B., Swart, R. J. & Leemans, R. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Balance Manag. 3, 3 (2008).

    Article 

    Google Scholar 

  • 137.

    Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22 (2004).

    Article 

    Google Scholar 

  • 138.

    Sathaye, J., Makundi, W., Dale, L., Chan, P. & Andrasko, K. GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. Energy J. 27, 127–162 (2006).

    Google Scholar 

  • 139.

    Canadell, J. G. & Schulze, E. D. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282 (2014).

    Article 

    Google Scholar 

  • 140.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Article 

    Google Scholar 

  • 141.

    Caldecott, B., Lomax, G. & Workman, M. Stranded Carbon Assets and Negative Emissions Technologies (Smith School of Enterprise and the Environment, 2015).

  • 142.

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic