in

Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei

  • 1.

    Leakey, L. S. B., Tobias, P. V. & Napier, J. R. A new species of the genus Homo from Olduvai Gorge. Nature 202, 7–9 (1964).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Bromage, T. G. & Schrenk, F. Biogeographic and climatic basis for a narrative of early hominid evolution. J. Hum. Evol. 28, 109–114 (1995).

    Article 

    Google Scholar 

  • 3.

    Klein, R. The causes of “robust” australopithecine extinction in Evolutionary history of the “robust” australopithecines (ed. Grine, F.E.) 499–505 (Aldine de Gruyter, 1988).

  • 4.

    McPherron, S.P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).

  • 5.

    Harmand, S. et al. Before the Oldowan: 3.3 Ma Stone Tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).

  • 6.

    Cerling, T. E. et al. Diet of Panthropus boisei in the early Pleistocene of East Africa. Proc. Natl. Acad. Sci. USA 108, 9337–9341 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Ungar, P. S. & Sponheiner, M. The diets of early hominins. Science 334, 190–193 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Cerling, T. E. et al. Diet of Theropithecus from 4 to 1 Ma in Kenya. Proc. Natl. Acad. Sci. 110, 10507–10512 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Ungar, P. S., Grine, F. E. & Teaford, M. F. Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS ONE 3, e2044 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Ludecke, T. et al. Dietary versatility of early Pleistocene hominins. Proc. Natl. Acad. Sci. USA 115, 13330–13335 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 12.

    Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2006221117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Martin, J. E., Tacail, T., Braga, J., Cerling, T. E. & Balter, V. Calcium isotopic ecology of Turkana Basin hominins. Nat. Commun. 11, 3587 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 14.

    Dominguez-Rodrigo, M. et al. First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Oluvai Gorge, Tanzania. PLoS ONE 8, e80347 (2013).

  • 15.

    Wood, B., Wood, C. & Konigsberg, L. Paranthropus boisei: An example of evolutionary stasis?. Am. J. Phys. Anthropol. 95, 117–136 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Wood, B. A. & Patterson, B. A. Paranthropus through the looking glass. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2016445117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Antón, S. C., Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 18.

    Wood, B. & Constantino, P. Paranthropus boisei: Fifty years of evidence and analysis. Yrbk. Phys. Anthropol. 50, 106–132 (2007).

    Article 

    Google Scholar 

  • 19.

    Muttoni, G., Scardia, G. & Kent, D. V. Early hominins in Europe: The Galerian migration hypothesis. Quat. Sci. Rev. 180, 1–29 (2018).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Shultz, S., Nelson, E. & Dunbar, R. I. M. Hominin cognitive evolution: identifying patterns and processes in the fossil and archaeological record. Phil. Trans. R. Soc. B 367, 2130–2140 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Raymo, M. E., Oppo, D. W. & Curry, W. The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanogr. 12, 546–559 (1997).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Levin, N. E. Environment and climate of early human evolution. Ann. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Potts, R. & Faith, J. T. Alternating high and low climate variability: the context of natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum. Evol. 87, 5–20 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 112, 11467–11472 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Negash, E. W. et al. Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2006982117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Pasquette, J. & Drapeau, M. S. M. Environmental comparisons of the Awash Valley, Turkana Basin and lower Omo Valley from upper Miocene to Holocene as assessed from stable carbon and oxygen isotopes of mammalian enamel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110099 (2021).

    Article 

    Google Scholar 

  • 29.

    Bobe, R. & Behrensmeyer, A. K. The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origins of the genus Homo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 399–420 (2004).

    Article 

    Google Scholar 

  • 30.

    Nutz, A. et al. Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): paleolake fluctuations, paleolandscapes and controlling factors. Earth-Sci. Rev. 211, 103415 (2020).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Peterson, L. C., Haug, G. H., Hughen, K. A. & Rohl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the Last Glacial. Science 290, 1947–1951 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Schefuß, E., Schouten, S., Jansen, J.H.F., Sinninghe Damste, J.S. African vegetation controlled sea surface temperatures in the mid-Pleistocene period. Nature 422, 418–421 (2003).

  • 35.

    deMenocal, P.B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

  • 36.

    Trauth, M. H., Maslin, M. A., Deino, A. & Strecker, M. R. Late Cenozoic moisture history of East Africa. Science 309, 2051–2053 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl. Acad. Sci. USA 108, 20422–20427 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Gathogo, P. N. & Brown, F. H. Stratigraphy of the Koobi Fora Formation (Pliocene and Pleistocene) in the Ileret region of northern Kenya. J. Afr. Earth Sci. 45, 369–390 (2006).

    ADS 
    Article 

    Google Scholar 

  • 40.

    Feibel, C. S. A geological history of the Turkana Basin. Evol. Anthropol. 20, 206–216 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Faith, T. J., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: No evidence for ancient hominin impacts. Science 362, 938–941 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl. Acad. Sci. USA 114, 7331–7336 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Lepre, C. J. Constraints on Fe-oxide formation in monsoonal Vertisols of Pliocene Kenya using rock magnetism and spectroscopy. Geochem. Geophys. Geosyst. 20, 4998–5013 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Faurby, S., Silvestro, D., Werdelin, L. & Antonelli, A. Brain expansion in early hominins predicts carnivore extinctions in East Africa. Ecol. Lett. 23, 537–544 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Faith, T. J., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. USA 116, 21478–21483 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Change Biol. 9, 973–982 (2003).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Bragg, F. J. et al. Stable isotope and modeling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosci. 10, 2001–2010 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Da, J., Zhang, Y., Li, G., Meng, X. & Ji, J. Low CO2 levels of the entire Pleistocene epoch. Nat. Commun. 10, 4342 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 50.

    Stap, L. B. et al. CO2 over the past 5 million years: continuous simulation and new δ11B-based proxy data. Earth Planet. Sci. Lett. 439, 1–10 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    van de Wal, R.S.W., de Boer, B., Lourens, LJ.., Kohler, P., Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–69 (2011).

  • 52.

    Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H. & Eiler, J. M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Nat. Acad. Sci. USA 107, 11245–11249 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Petit, J.R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica: Nature 399, 429–436 (1999).

  • 54.

    Schefuß, E. & Dupont, L. M. Multiple drivers of Miocene C4 ecosystem expansions. Nat. Geosci. 13, 463–464 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Johnson, T.C. et al. A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature 537, 220–224 (2016).

  • 56.

    Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).

  • 57.

    Caley, T. et al. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. Nature 560, 76–79.

  • 58.

    Kim, S.-J. et al. High-resolution climate simulation of the last glacial maximum. Clim Dyn 31, 1–16 (2008).

    Article 

    Google Scholar 

  • 59.

    Tierney, J. E., Russell, J. M., Sinninghe Damsté, J. S., Huang, Y. & Verschuren, D. Late quaternary behavior of the East African monsoon and the importance of the Congo Air Boundary. Quatern. Sci. Rev. 30, 798–807 (2011).

    ADS 
    Article 

    Google Scholar 

  • 60.

    Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).

    Article 

    Google Scholar 

  • 61.

    Quinn, R. L. Isotopic equifinality and rethinking the diet of Australopithecus anamensis. Am. J. Phys. Anthropol. 169, 403–421 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Wood, D. Strait, Patterns of resource use in early Homo and Paranthropus. J. Hum. Evol. 46, 119–162 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-019-0916-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Lepre, C. J. et al. An earlier origin for the Acheulian. Nature 477, 82–85 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Braun, D.R. et al. Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight technological diversity. Proc. Natl. Acad. Sci. USA 116, 11712–11717 (2019).

  • 66.

    Mana, S., Hemming, S., Kent, D. V. & Lepre, C. J. Temporal and stratigraphic framework for paleoanthropology site within East-Central Area 130, Koobi Fora Kenya. Front. Earth Sci. 7, 230 (2019).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Shea, J. J. Occasional, obligatory, and habitual stone tool use in hominin evolution. Evol. Anthropol. 26, 200–217 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    de la Torre, I. The origins of the Acheulean: past and present perspectives on a major transition in human evolution. Philos. Trans. R. Soc. B 371, 20150245 (2016).

    Article 

    Google Scholar 

  • 69.

    Harris, J. M., Brown, F. H. & Leakey, M. G. Geology and paleontology of Plio-Pleistocene localities west of Lake Turkana Kenya. Contrib. Sci. 399, 1–128 (1988).

    Google Scholar 

  • 70.

    McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo-Turkana Basin East Africa. J. Geol. Soc. Lond. 169, 213–226 (2012).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Quinn, R. L. et al. Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. J. Hum. Evol. 65, 65–78 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Potts, R. et al. Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science 360, 86–90 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Levin, N. E., Zipser, E. J. & Cerling, T. E. isotopic compositions of waters from Ethiopia and Kenya: insights into moisture sources for eastern Africa. J. Geophys. Res. 114, D23306 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Accounting for firms’ positive impacts on the environment

    Homing in on longer-lasting perovskite solar cells