in

Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef

  • 1.

    Bell P. Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res. 1992;26:553–68.

    CAS 
    Article 

    Google Scholar 

  • 2.

    Odum HT, Odum EP. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr. 1955;25:291–320.

    Article 

    Google Scholar 

  • 3.

    Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Ceh J, Kilburn MR, Cliff JB, Raina JB, van Keulen M, Bourne DG. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol. 2013;3:2393–400.

    Article 

    Google Scholar 

  • 5.

    Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–10.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Benavides M, Bednarz VN, Ferrier-Pagès C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci. 2017;4:2261–17.

    Article 

    Google Scholar 

  • 7.

    Cardini U, Bednarz VN, van Hoytema N, Rovere A, Naumann MS, Al-Rshaidat MMD, et al. Budget of primary production and dinitrogen fixation in a highly seasonal Red Sea coral reef. Ecosystems. 2016;19:771–85.

    Article 

    Google Scholar 

  • 8.

    Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Bednarz VN, van de Water JAJM, Rabouille S, Maguer JF, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2018;21:480–95.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 10.

    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Davey M, Holmes G, Johnstone R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs. 2007;27:227–36.

    Article 

    Google Scholar 

  • 12.

    Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser. 2007;346:143–52.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Olson ND, Ainsworth TD, Gates RD, Takabayashi M. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol. 2009;371:140–6.

    CAS 
    Article 

    Google Scholar 

  • 14.

    Benavides M, Houlbrèque F, Camps M, Lorrain A, Grosso O, Bonnet S. Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol. 2016;219:2608–12.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Cardini U, Bednarz V, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 16.

    Grover R, Ferrier-Pagès C, Maguer JF, Ezzat L, Fine M. Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol. 2014;217:3962–3.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Mohr W, Großkopf T, Wallace DWR, LaRoche J. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE. 2010;5:e12583.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Bednarz VN, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their betabolic status. MBio. 2017;8:e02058-16.

  • 20.

    Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Grosso O, et al. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. ISME J. 2019;13:2882–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci. 2017;4:171201.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    D’Angelo C, Wiedenmann J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain. 2014;7:82–93.

    Article 

    Google Scholar 

  • 26.

    Capone DG, O’Neil JM, Zehr J, Carpenter EJ. Basis for diel variation in nitrogenase activity in the marine planktonic Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1990;56:3532–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Mulholland MR, Ohki K, Capone DG. Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria). J Phycol. 2001;37:1001–9.

    CAS 
    Article 

    Google Scholar 

  • 28.

    Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochem Cycles. 2019;33:826–40.

    CAS 
    Article 

    Google Scholar 

  • 29.

    Wen Z, Lin W, Shen R, Hong H, Kao SJ, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:1–10.

    Article 
    CAS 

    Google Scholar 

  • 30.

    Grosse J, Bombar D, Doan HN, Nguyen LN, Voss M. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol Oceanogr. 2010;55:1668–80.

    CAS 
    Article 

    Google Scholar 

  • 31.

    Mills MM, Turk-Kubo KA, Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian coral lagoon. Front Microbiol. 2018;9:554.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:1490–7.

    Article 
    CAS 

    Google Scholar 

  • 36.

    Erler DV, Shepherd BO, Linsley BK, Nothdurft LD, Hua Q, Lough JM. Has nitrogen supply to coral reefs in the South Pacific Ocean changed over the past 50 thousand years? Paleoceanogr Paleoclimatol. 2019;34:567–79.

    Article 

    Google Scholar 

  • 37.

    Pratte ZA, Richardson LL, Mills DK. Microbiota shifts in the surface mucopolysaccharide layer of corals transferred from natural to aquaria settings. J Invertebr Pathol. 2015;125:42–4.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A. Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett. 2007;276:106–13.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.

    Article 

    Google Scholar 

  • 40.

    Hu SK, Campbell V, Connell P, Gellene AG, Liu Z, Terrado R, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific. FEMS Microbiol Ecol. 2016;92:fiw050.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 41.

    Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013;7:210–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Bauman AG, Hoey AS, Dunshea G, Feary DA, Low J, Todd PA. Macroalgal browsing on a heavily degraded, urbanized equatorial reef system. Sci Rep. 2017;7:1–8.

    CAS 
    Article 

    Google Scholar 

  • 45.

    Januchowski-Hartley FA, Bauman AG, Morgan KM, Seah JCL, Huang D, Todd PA. Accreting coral reefs in a highly urbanized environment. Coral Reefs. 2020;39:717–31.

    Article 

    Google Scholar 

  • 46.

    Klawonn I, Lavik G, Böning P, Marchant HK, Dekaezemacker J, Mohr W, et al. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front Microbiol. 2015;6:769.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Pupier CA, Bednarz VN, Grover R, Fine M, Maguer JF, Ferrier-Pagès C. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front Microbiol. 2019;10:1860.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Bombar D, Paerl RW, Anderson R, Riemann L. Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes. Front Mar Sci. 2018;5:e00929–11.

    Article 

    Google Scholar 

  • 49.

    R Core Team. R: a language and environment for statistical computing. 2019. https://www.R-project.org/.

  • 50.

    Hansen HP, Koroleff F. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of seawater analysis. Weinheim, Germany: Wiley; 1999. p. 159–228.

  • 51.

    Morgan KM, Moynihan MA, Sanwlani N, Switzer AD. Light limitation and depth-variable sedimentation drives vertical reef compression on turbid coral reefs. Front Mar Sci. 2020;7:571256.

    Article 

    Google Scholar 

  • 52.

    Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE. 2011;6:e27492.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Comeau AM, Douglas GM, Langille MGI. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127-16.

  • 55.

    Weiler BA. Bacterial Communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.

    Article 

    Google Scholar 

  • 56.

    Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE. 2012;7:e42149.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Bower SM, Carnegie RB, Goh B, Jones SRM, Lowe GJ, Mak MWS. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol. 2004;51:325–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Piredda R, Tomasino MP, D’Erchia AM, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean long term ecological research site. FEMS Microbiol Ecol. 2016;93:fiw200.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 59.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016;5:1492.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 62.

    McLaren MR. Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) [Data set]. Zenodo; 2020. https://doi.org/10.5281/zenodo.3731176.

  • 63.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Heller P, Tripp JH, Turk-Kubo K, Zehr JP. ARBitrator: a software pipeline for on-demand retrieval of auto-curated nifH sequences from GenBank. Bioinformatics. 2014;30:2883–90.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Moynihan MA. moyn413/nifHdada2: nifH dada2 reference database, v1.1.0. Zenodo; 2020. https://doi.org/10.5281/zenodo.3964214.

  • 66.

    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.

    Article 
    CAS 

    Google Scholar 

  • 67.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.

    Article 
    CAS 

    Google Scholar 

  • 68.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Bell PRF, Elmetri I, Lapointe BE. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities. Ambio. 2013;43:361–76.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 70.

    Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.

    Article 

    Google Scholar 

  • 72.

    Ferrier-Pagès C, Hoogenboom M, Houlbrèque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht, The Netherlands: Springer; 2011. p. 215–29.

  • 73.

    Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.

    PubMed 
    Article 

    Google Scholar 

  • 74.

    Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.

    PubMed 
    Article 

    Google Scholar 

  • 75.

    Méheust R, Castelle CJ, Carnevali PBM, Farag IF, He C, Chen LX, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Nomata J, Mizoguchi T, Tamiaki H, Fujita Y. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem. 2006;281:15021–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Suzuki JY, Bauer CE. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell. 1992;4:929–40.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Bednarz VN, Naumann MS, Cardini U, van Hoytema N, Rix L, Al-Rshaidat MMD, et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE. 2018;13:e0199022.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Weber L, González Díaz P, Armenteros M, Apprill A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr. 2019;64:2373–88.

    CAS 
    Article 

    Google Scholar 

  • 80.

    Bourne DG, Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol. 2005;7:1162–74.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 2012;6:1314–24.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Kopp C, Pernice M, Domart-Coulon I, Djediat C, Spangenberg JE, Alexander D, et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio. 2013;4:e00052-13.

  • 83.

    Magnusson SH, Fine M, Kühl M. Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser. 2007;332:119–28.

    Article 

    Google Scholar 

  • 84.

    Schlichter D, Zscharnack B, Krisch H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften. 1995;82:561–4.

    CAS 
    Article 

    Google Scholar 

  • 85.

    Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK. Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere. 2016;7:e01373.

  • 86.

    Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O. Phototrophic microendoliths bloom during coral “white syndrome”. Coral Reefs. 2006;25:577–81.

    Article 

    Google Scholar 

  • 87.

    Fine M, Oren U, Loya Y. Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser. 2002;234:119–25.

    Article 

    Google Scholar 

  • 88.

    Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol. 2009;68:152–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep. 2019;9:1–13.

    Google Scholar 

  • 90.

    Le Campion-Alsumard T, Golubic S, Hutchings P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser. 1955;117:149–57.

    Article 

    Google Scholar 

  • 91.

    Yang SH, Tandon K, Lu CY, Wada N, Shih CJ, Hsiao SSY, et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome. 2019;7:1–13.

    Article 

    Google Scholar 

  • 92.

    Yost DM, Wang LH, Fan TY, Chen CS, Lee RW, Sogin E, et al. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology. 2013;116:262–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Jacques TG, Pilson MEQ. Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol. 1983;60:167–78.

    Article 

    Google Scholar 

  • 95.

    Shashar N, Stambler N. Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.

    CAS 
    Article 

    Google Scholar 

  • 96.

    Risk MJ, Muller HR. Porewater in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.

    Article 

    Google Scholar 

  • 97.

    Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Proceedings of the 6th International Coral Reef Symposium. 2. Townsville, Australia: AIMS; 1988. p. 1–4.

  • 98.

    Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.

    CAS 
    Article 

    Google Scholar 

  • 99.

    Gaby JC, Buckley DH. A global census of nitrogenase diversity. Environ Microbiol. 2011;13:1790–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, et al. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl Environ Microbiol. 2018;84:e01512-17.

  • 101.

    Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, et al. Diazotroph diversity associated with scleractinian corals and its relationships with environmental variables in the South China Sea. Front Physiol. 2020;11:615.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Molecular Ecology. 2017;26:5344–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 103.

    Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr Biol. 2019;29:2723–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 104.

    Chen YH, Yang SH, Tandon K, Lu CY, Chen HJ, Shih CJ, et al. A genomic view of coral-associated Prosthecochloris and a companion sulfate-reducing bacterium. bioRxiv. 2019. https://doi.org/10.1101/2019.12.20.883736.

  • 105.

    Weiler BA, Verhoeven JTP, Dufour SC. Bacterial communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.

    Article 

    Google Scholar 

  • 106.

    Tiedje J. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder J, editor. Environmental microbiology of anaerobes. NY: John Wiley and Sons; 1988. p. 179–244.

  • 107.

    Becker CC, Brandt M, Miller C, Apprill A. Stony coral tissue loss disease biomarker bacteria identified in corals and overlying waters using a rapid field-based sequencing approach. bioRxiv. 2021. https://doi.org/10.1101/2021.02.17.431614.

  • 108.

    Parker KE, Ward JO, Eggleston EM, Fedorov E, Parkinson JE, Dahlgren CP, et al. Characterization of a thermally tolerant Orbicella faveolata reef in Abaco, The Bahamas. Coral Reefs. 2020;39:675–85.

    Article 

    Google Scholar 

  • 109.

    Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.

    Article 
    CAS 

    Google Scholar 

  • 110.

    Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. 2014;69:95–105.

    CAS 
    Article 

    Google Scholar 

  • 111.

    Wu Z, Yang X, Lin S, Lee WH, Lam PKS. Isolation and characterization of a Rhizobium bacterium associated with the toxic dinoflagellate Gambierdiscus balechii. bioRxiv. 2019. https://doi.org/10.1101/789107.

  • 112.

    Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogenfixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 114.

    Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.

    CAS 
    Article 

    Google Scholar 

  • 115.

    Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat M, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing emissions by decarbonizing industry

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon