Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Google Scholar
Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).
Google Scholar
Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).
Google Scholar
Tran, C. & Hadfield, M. G. Localization of sensory mechanisms utilized by coral planulae to detect settlement cues. Invertebr. Biol. 132, 195–206 (2013).
Google Scholar
Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib. Mar. Sci. 38, 437–457 (2009).
Google Scholar
Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).
Google Scholar
Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).
Google Scholar
Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).
Google Scholar
Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).
Google Scholar
Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).
Google Scholar
Gómez-Lemos, L. A., Doropoulos, C., Bayraktarov, E. & Diaz-Pulido, G. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci. Rep. 8, 1–11 (2018).
Google Scholar
Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 181, 104–122 (1991).
Google Scholar
Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).
Google Scholar
Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082 (2011).
Google Scholar
Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).
Google Scholar
Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).
Google Scholar
Quéré, G., Intertaglia, L., Payri, C. & Galand, P. E. Disease specific bacterial communities in a Coralline Algae of the Northwestern Mediterranean Sea: A combined culture dependent and -independent approach. Front Microbiol 10, 5 (2019).
Google Scholar
Yang, F., Mo, J., Wei, Z. & Long, L. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis. FEMS Microbiol. Ecol. 97, fiaa215 (2021).
Google Scholar
Sneed, J. M., Ritson-Williams, R. & Paul, V. J. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J. 9, 2527–2536 (2015).
Google Scholar
Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).
Google Scholar
Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).
Google Scholar
Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).
Google Scholar
Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol. 19, 303–315 (2013).
Google Scholar
Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L. & De Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).
Google Scholar
Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).
Google Scholar
Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).
Google Scholar
Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).
Google Scholar
Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).
Google Scholar
Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).
Google Scholar
Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).
Google Scholar
Sogin, E. M., Anderson, P., Williams, P., Chen, C.-S. & Gates, R. D. Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE 9, e111274 (2014).
Google Scholar
Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B Biol. Sci. 283, 20160469 (2016).
Google Scholar
Cutignano, A. et al. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 17, 348–358 (2016).
Google Scholar
Paix, B. et al. A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the Thallus of a Mediterranean Seaweed Holobiont. Front. Microbiol. 11, 494 (2020).
Google Scholar
Vohsen, S. A., Fisher, C. R. & Baums, I. B. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 15, 34 (2019).
Google Scholar
Jiang, M. et al. Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by 1H-NMR-based metabolomics. Phytochem. Anal. 25, 50–58 (2014).
Google Scholar
Webster, N. S., Soo, R., Cobb, R. & Negri, A. P. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J. 5, 759–770 (2011).
Google Scholar
Babcock, R. & Mundy, C. Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206, 179–201 (1996).
Google Scholar
Zhang, J., Li, C., Yu, G. & Guan, H. Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar. Drugs 12, 3634–3659 (2014).
Google Scholar
Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 61, 192–206 (2014).
Google Scholar
Deal, M. S., Hay, M. E., Wilson, D. & Fenical, W. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136, 107–114 (2003).
Google Scholar
Plouguerné, E. et al. Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Front. Mar. Sci. 7, 116 (2020).
Google Scholar
Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).
Google Scholar
Schmahl, G. Induction of stolon settlement in the scyphopolyps ofAurelia aurita (Cnidaria, Scyphozoa, Semaeostomeae) by glycolipids of marine bacteria. Helgoländer Meeresunters 39, 117–127 (1985).
Google Scholar
Murakami, H., Nobusawa, T., Hori, K., Shimojima, M. & Ohta, H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant. Physiol. 177, 181–193 (2018).
Google Scholar
Melo, T. et al. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 8, 181–191 (2015).
Google Scholar
Vogel, G. & Eichenberger, W. Betaine lipids in lower plants biosynthesis. of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33, 427–436 (1992).
Google Scholar
Meistertzheim, A.-L., Nugues, M. M., Quéré, G. & Galand, P. E. Pathobiomes differ between two diseases affecting reef building coralline algae. Front. Microbiol. 8, 1686 (2017).
Google Scholar
Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).
Google Scholar
Gram, L., Melchiorsen, J. & Bruhn, J. B. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar. Biotechnol. N. Y. N. 12, 439–451 (2010).
Google Scholar
Daniel, R., Simon, M. & Wemheuer, B. Editorial: Molecular ecology and genetic diversity of the roseobacter clade. Front. Microbiol. 9, 1185 (2018).
Google Scholar
Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).
Google Scholar
Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).
Google Scholar
Quigley, K. M., Roa, C. A., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. MicrobiologyOpen 9, e959 (2020).
Google Scholar
Overmann, J. Green sulfur bacteria. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Trujillo, M. E. et al.) (2015).
Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14, 1224–1239 (2012).
Google Scholar
Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P. & Gates, R. D. Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environ. Microbiol. Rep. 9, 310–315 (2017).
Google Scholar
Gordon, G. D., Masaki, T. & Akioka, H. Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12, 31 (1976).
Adey, W. H., Townsend, R. A. & Boykins, W. T. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib. Mar. Sci. 1, 1–74 (1982).
Google Scholar
Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: an R package for ‘omics feature selection and multiple data integration. BioRxiv 13, 108597 (2017).
Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).
Google Scholar
Source: Ecology - nature.com