in

Decadal changes in fire frequencies shift tree communities and functional traits

  • 1.

    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    van der Werf, G. R. G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article  Google Scholar 

  • 6.

    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Westerling, A. L., Turner, M. G., Smithwick, E. A. H., Romme, W. H. & Ryan, M. G. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl Acad. Sci. USA 108, 13165–13170 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

    Article  Google Scholar 

  • 9.

    Lewis, T. Very frequent burning encourages tree growth in sub-tropical Australian eucalypt forest. Forest Ecol. Manag. 459, 117842 (2020).

    Article  Google Scholar 

  • 10.

    Peterson, D. W. & Reich, P. B. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecol. Appl. 11, 914–927 (2001).

    Article  Google Scholar 

  • 11.

    Tilman, D. et al. Fire suppression and ecosystem carbon storage. Ecology 81, 2680–2685 (2000).

    Article  Google Scholar 

  • 12.

    Pellegrini, A. F. A., Hedin, L. O., Staver, A. C. & Govender, N. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96, 1275–1285 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).

    Article  Google Scholar 

  • 14.

    Uhl, C. & Kauffman, J. B. Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology 71, 437–449 (1990).

    Article  Google Scholar 

  • 15.

    Case, M. F., Wigley‐Coetsee, C., Nzima, N., Scogings, P. F. & Staver, A. C. Severe drought limits trees in a semi‐arid savanna. Ecology 100, e02842 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Schoennagel, T., Turner, M. G. & Romme, W. H. The influence of fire interval and serotiny on postfire lodgepole pine density in Yellowstone National Park. Ecology 84, 2967–2978 (2003).

    Article  Google Scholar 

  • 18.

    Higgins, S. I. et al. Which traits determine shifts in the abundance of tree species in a fire-prone savanna? J. Ecol. 100, 1400–1410 (2012).

    Article  Google Scholar 

  • 19.

    Lehmann, C. E. R. et al. Savanna vegetation–fire–climate relationships differ among continents. Science 343, 548–552 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Higgins, S. I., Bond, J. I. & Trollope, W. S. Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. J. Ecol. 88, 213–229 (2000).

    Article  Google Scholar 

  • 22.

    Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest–grassland continuum. Ecology 82, 1703–1719 (2001).

    Google Scholar 

  • 24.

    Phillips, R., Brzostek, E. & Midgley, M. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 99, 41–51 (2013).

    Article  CAS  Google Scholar 

  • 25.

    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Read, D. J. & Perez‐Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol. 157, 475–492 (2003).

    Article  Google Scholar 

  • 27.

    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Jackson, R. B. et al. Trading water for carbon with biological carbon sequestration. Science 310, 1944–1947 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).

    Article  Google Scholar 

  • 31.

    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Steel, Z. L., Safford, H. D. & Viers, J. H. The fire frequency–severity relationship and the legacy of fire suppression in California forests. Ecosphere 6, 1–23 (2015).

    Article  Google Scholar 

  • 33.

    Scott, J. & Burgan, R. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model General Technical Report RMRS-GTR-153 (USDA, Forest Service and Rocky Mountain Research Station, 2005).

  • 34.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    Article  Google Scholar 

  • 35.

    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Butler, O. M., Elser, J. J., Lewis, T., Mackey, B. & Chen, C. The phosphorus-rich signature of fire in the soil–plant system: a global meta-analysis. Ecol. Lett. 21, 335–344 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Raison, R. J., Khanna, P. K. & Woods, P. V. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Can. J. Forest Res. 15, 657–664 (1985).

    CAS  Article  Google Scholar 

  • 38.

    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1906655116 (2019).

  • 39.

    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Woinarski, J. C. Z., Risler, J. & Kean, L. Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecol. 29, 156–176 (2004).

    Article  Google Scholar 

  • 41.

    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest–tree symbioses. Nature 569, 404–408 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).

    Article  Google Scholar 

  • 43.

    Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. Forest Res. 30, 274–282 (2000).

    Article  Google Scholar 

  • 44.

    Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. Forest Ecol. Manag. 140, 227–238 (2001).

    Article  Google Scholar 

  • 45.

    Pellegrini, A. F. A. Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97, 313–324 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 47.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, e4794 (2018).

    Article  Google Scholar 

  • 48.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 49.

    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: a model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).

    PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Hoffmann, W. A., Marchin, R. M., Abit, P. & Lau, O. L. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob. Change Biol. 17, 2731–2742 (2011).

    Article  Google Scholar 

  • 52.

    Harmon, M. E. Decomposition of standing dead trees in the southern Appalachian Mountains. Oecologia 52, 214–215 (1982).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article  Google Scholar 

  • 54.

    Gurevitch, J., Morrow, L. L., Wallace, A. & Walsh, J. S. A meta-analysis of competition in field experiments. Am. Nat. 140, 539–572 (1992).

    Article  Google Scholar 

  • 55.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Pearse, W. D. et al. pez: phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    Brockway, D. G. & Lewis, C. E. Long-term effects of dormant-season prescribed fire on plant community diversity, structure and productivity in a longleaf pine wiregrass ecosystem. Forest Ecol. Manag. 96, 167–183 (1997).

    Article  Google Scholar 

  • 59.

    Lewis, T. & Debuse, V. J. Resilience of a eucalypt forest woody understorey to long-term (34–55 years) repeated burning in subtropical Australia. Int. J. Wildl. Fire 21, 980–991 (2012).

    Article  Google Scholar 

  • 60.

    Scudieri, C. A., Sieg, C. H., Haase, S. M., Thode, A. E. & Sackett, S. S. Understory vegetation response after 30 years of interval prescribed burning in two ponderosa pine sites in northern Arizona, USA. Forest Ecol. Manag. 260, 2134–2142 (2010).

    Article  Google Scholar 

  • 61.

    Lewis, T., Reif, M., Prendergast, E. & Tran, C. The effect of long-term repeated burning and fire exclusion on above- and below-ground blackbutt (Eucalyptus pilularis) forest vegetation assemblages. Austral Ecol. 37, 767–778 (2012).

    Article  Google Scholar 

  • 62.

    Stratton, R. Effects of Long-Term Late Winter Prescribed Fire on Forest Stand Dynamics, Small Mammal Populations, and Habitat Demographics in a Tennessee Oak Barrens. MSc thesis, Univ. Tennessee (2007).

  • 63.

    Wade, D. D. Long-Term Site Responses to Season and Interval of Underburns on the Georgia Piedmont (Forest Service Research Data Archive, 2016).

  • 64.

    Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Nesmith, C. B., Caprio, A. C., Pfaff, A. H., McGinnis, T. W. & Keeley, J. E. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Forest Ecol. Manag. 261, 1275–1282 (2011).

    Article  Google Scholar 

  • 66.

    Haywood, J. D., Harris, F. L., Grelen, H. E. & Pearson, H. A. Vegetative response to 37 years of seasonal burning on a Louisiana longleaf pine site. South. J. Appl. For. 25, 122–130 (2001).

    Article  Google Scholar 

  • 67.

    Higgins, S. I. et al. Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology 88, 1119–1125 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 68.

    Gignoux, J., Lahoreau, G., Julliard, R. & Barot, S. Establishment and early persistence of tree seedlings in an annually burned savanna. J. Ecol. 97, 484–495 (2009).

    Article  Google Scholar 

  • 69.

    Tizon, F. R., Pelaez, D. V. & Elia, O. R. The influence of controlled fires on a plant community in the south of the Caldenal and its relationship with a regional state and transition model. Int. J. Exp. Bot. 79, 141–146 (2010).

    Google Scholar 

  • 70.

    Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak–pine forest. Forest Ecol. Manag. 250, 234–243 (2007).

    Article  Google Scholar 

  • 71.

    Ryan, C. M., Williams, M. & Grace, J. Above‐ and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).

    Article  Google Scholar 

  • 72.

    Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a midwestern, USA oak (Quercus) forest. Geoderma 183184, 80–91 (2012).

    Article  CAS  Google Scholar 

  • 73.

    Burton, J. A., Hallgren, S. W., Fuhlendorf, S. D. & Leslie, D. M. Jr. Understory response to varying fire frequencies after 20 years of prescribed burning in an upland oak forest. Plant Ecol. 212, 1513–1525 (2011).

    Article  Google Scholar 

  • 74.

    Stewart, J. F., Will, R. E., Robertson, K. M. & Nelson, C. D. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda). Conserv. Genet. 16, 491–495 (2015).

    Article  Google Scholar 

  • 75.

    Knapp, B. O., Stephan, K. & Hubbart, J. A. Structure and composition of an oak–hickory forest after over 60 years of repeated prescribed burning in Missouri, U.S.A. Forest Ecol. Manag. 344, 95–109 (2015).

    Article  Google Scholar 

  • 76.

    Olson, M. G. Tree regeneration in oak–pine stands with and without prescribed fire in the New Jersey Pine Barrens: management implications. North. J. Appl. For. 28, 47–49 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions