in

Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting

  • 1.

    Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).

    Article 

    Google Scholar 

  • 2.

    Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Ritchie, E. G. et al. Ecosystem restoration with teeth: what role for predators?. Trends Ecol. Evol. 27(5), 265–271 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Terborgh, J. & Estes, J. A. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2010).

    Google Scholar 

  • 5.

    Creel, S. & Winnie, J. A. Responses of elk herd size to fine scale spatial and temporal variation in the risk of predation by wolves. Anim. Behav. 69, 1181–1189 (2005).

    Article 

    Google Scholar 

  • 6.

    Fischhoff, I. R., Sundaresan, S. R., Cordingley, J. & Rubenstein, D. I. Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behav. Ecol. 18, 725–729 (2007).

    Article 

    Google Scholar 

  • 7.

    Latombe, G., Fortin, D. & Parrott, L. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolves. J. Anim. Ecol. 83, 185–198 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).

    Article 

    Google Scholar 

  • 9.

    Creel, S., Winnie, J. A. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. PNAS 106(30), 12388–12393 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Dulude-de Broin, F., Hamel, S., Mastromonaco, G. F. & Côté, S. D. Predation risk and mountain goat reproduction: evidence for stress-induced breeding suppression in a wild ungulate. Funct. Ecol. 34(5), 1003–1014 (2020).

    Article 

    Google Scholar 

  • 11.

    Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI Publishing, 2000).

    Google Scholar 

  • 12.

    Boonstra, R. The ecology of stress: a marriage of disciplines. Funct. Ecol. 27, 7–10 (2013).

    Article 

    Google Scholar 

  • 13.

    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Kelley, K. W. Immunological consequences of changing environmental stimuli. In Animal Stress (ed. Moberg, G. P.) 193–223 (American Physiological Society, Bethesda, 1985).

  • 15.

    Mӧstl, E. & Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 23, 67–74 (2002).

    Article 

    Google Scholar 

  • 16.

    Ursin, H. & Eriksen, H. R. The cognitive activation theory of stress. Psychoneuroendocrinology 29(5), 567–592 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Lovallo, W. R. Individual differences in reactivity to stress. In Stress and Health. Biological and Psychological Interactions (ed. Lovallo, W. R.) 203–225 (Sage, 2016).

  • 18.

    Patchev, V. K. & Patchev, A. V. Experimental models of stress. Dialogues Clin. Neurosci. 8(4), 417–432 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Mills, J. L. Scientific Principles of Stress (University of the West Indie Press, 2012).

    Google Scholar 

  • 20.

    Henry, J. P. Biological basis of the stress response. Integr. Physiol. Behav. Sci. 27, 66–83 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F. X. & Spengler, D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 155(5), 1751–1762 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Novais, A., Monteiro, S., Roque, S., Correia-Neves, M. & Sousa, N. How age, sex and genotype shape the stress response. Neurob. Stress 6, 44–56 (2017).

    Article 

    Google Scholar 

  • 23.

    Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59(2), 273–281 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19(5), 249–255 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Mohajeri, M. H., La Fata, G., Steinert, R. E. & Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 76, 481–496 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E. & Savignac, H. M. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108(38), 16050–16055 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Beauclercq, S. et al. A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. J Anim. Sci. Biotechnol. 10, 21 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Jianguo, L., Xueyang, J., Cui, W., Changxin, W. & Xuemei, Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 9, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • 33.

    Valerio, A., Casadei, L., Giuliani, A. & Valerio, M. Fecal metabolomics as a novel non-invasive method for short-term stress monitoring in beef cattle. J. Proteome Res. 19(2), 845–853 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabolomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Lindon, J. C., Nicholson, J. K. & Holmes, E. The Handbook of Metabonomics and Metabolomics (Elsevier, 2007).

    Google Scholar 

  • 37.

    Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Nicholson, J. K. & Lindon, J. C. Metabonomics. Nature 455, 1054–1056 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Viant, M. R. Environmental metabolomics using 1H-NMR spectroscopy. Methods Mol. Biol. 410, 137–150 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. & Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9), 1243–1266 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Worley, B. & Powers, R. Multivariate analysis in metabolomics. Curr. Metabolomics 1(1), 92–107 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Rivas-Ubach, A. et al. Ecometabolomics: optimized NMR-based method. Methods Ecol. Evol. 4(5), 464–473 (2013).

    Article 

    Google Scholar 

  • 43.

    Chen, M. X., Wang, S. Y., Kuo, C. H. & Tsai, I. L. Metabolome analysis for investigating host-gut microbiota interactions. JFMA 118(1), S10–S22 (2019).

    Google Scholar 

  • 44.

    Emwas, A. H. M. The Strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics. Methods in Molecular Biology (ed. Bjerrum, J. T.) 1277, 161–193 (Human Press, 2015).

  • 45.

    Emwas, A. H. M. et al. NMR spectroscopy for metabolomics research. Metabolites 9(7), 123 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Wiles, G. J., Allen, H. L. & Hayes, G. E. Wolf Conservation and Management Plan for Washington (Washington Department of Fish and Wildlife, 2011).

    Google Scholar 

  • 48.

    Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk-foraging trade-offs: toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. 12, 6–11 (2016).

    Article 

    Google Scholar 

  • 49.

    Brown, J. A. Mortality of Range Livestock in Wolf-Occupied Areas of Washington. Thesis. Washington State University, Pullman, WA, USA (2015).

  • 50.

    Fieberg, J. & Kochanny, C. O. Quantification of home range overlap: the importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).

    Article 

    Google Scholar 

  • 51.

    Robert, K., Garant, D. & Pelletier, F. Keep in touch: does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).

    Article 

    Google Scholar 

  • 52.

    Angel, S. P. et al. Climate change and cattle production: impact and adaptation. J. Vet. Med. Res. 5(4), 1134 (2018).

    Google Scholar 

  • 53.

    Brosh, A. et al. Energy cost of cows’ grazing activity: use of the heart rate method and the global positioning system for direct field estimation. J. Anim. Sci. 84, 1951–1967 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Provenza, F. D. Postingestive feed-back as an elemental determinant of food preference and intake in ruminants. J. Range Manag. 48, 2–17 (1995).

    Article 

    Google Scholar 

  • 55.

    Provenza, F. D. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74, 2010–2020 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Howery, L. D., Provenza, F. D., Ruyle, G. B. & Jordan, N. C. How do animals learn if rangeland plants are toxic or nutritious?. Rangelands 20, 4–9 (1998).

    Google Scholar 

  • 57.

    Davitt, B. B. & Nelson, J. R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the Western States and Provinces Elk Workshop (ed. Nelson, R.W.) 133–147 (Edmonton, 1984).

  • 58.

    Church, D. C. Digestive Physiology and Nutrition of Ruminants I (Oxford Press, 1969).

    Google Scholar 

  • 59.

    Sato, S. Leadership during actual grazing in a small herd of cattle. Appl. Anim. Ethol. 8, 53–65 (1982).

    Article 

    Google Scholar 

  • 60.

    Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B 365, 2187–2200 (2010).

    Article 

    Google Scholar 

  • 61.

    Deda, O., Gika, H. G., Wilson, I. D. & Theodoridis, G. A. An overview of fecal preparation for global metabolic profiling. J. Pharm. Biomed. 113, 137–150 (2015).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Landakadurai, B. P., Nagato, E. G. & Simpson, M. J. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev. 21, 180–205 (2013).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Wiklund, S. et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucl. Acids Res. 37, D603–D610 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Frair, J. L. et al. Scale of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 20, 273–287 (2005).

    Article 

    Google Scholar 

  • 66.

    Valerio, A. Stress-Mediated and Habitat-Mediated Risk Effects of Free-Ranging Cattle in Washington. Dissertation. Washington State University, Pullman, WA (2019).

  • 67.

    Winnie, J. & Creel, S. Sex-specific behavioral responses of elk to spatial and temporal variation in the threat of wolf predation. Anim. Behav. 73, 215–225 (2007).

    Article 

    Google Scholar 

  • 68.

    Bundy, J. G., Davey, M. P. & Viant, M. R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How to prevent short-circuiting in next-gen lithium batteries

    How coal’s decline impacts county and school funding