in

Diel niche variation in mammals associated with expanded trait space

  • 1.

    Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).

    Article 

    Google Scholar 

  • 5.

    DeCoursey, P. J. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33 (2004).

    Article 

    Google Scholar 

  • 6.

    Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. In Neurobiology of Circadian Timing, Vol. 199 (eds. Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G.) 281–304 (Elsevier, 2012).

  • 7.

    Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).

    Article 

    Google Scholar 

  • 10.

    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 14.

    Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).

    Article 

    Google Scholar 

  • 17.

    Ankel-Simons, F. & Rasmussen, D. T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137, 100–117 (2008).

    Article 

    Google Scholar 

  • 18.

    Russo, D., Maglio, G., Rainho, A., Meyer, C. F. J. & Palmeirim, J. M. Out of the dark: diurnal activity in the bat Hipposideros ruber on São Tomé island (West Africa). Mamm. Biol. 76, 701–708 (2011).

    Article 

    Google Scholar 

  • 19.

    Halle, S. Ecological relevance of daily activity patterns. In Activity Patterns in Small Mammals: An Ecological Approach (eds. Halle, S. & Stenseth, N. C.) 67–90 (Springer, 2000).

  • 20.

    Mammola, S. Assessing similarity of n-dimensional hypervolumes: which metric to use? J. Biogeogr. 46, 2012–2023 (2019).

    Article 

    Google Scholar 

  • 21.

    Langerhans, R. B. & DeWitt, T. J. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349 (2004).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Bielby, J. et al. The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 20, 479–490 (2006).

    Article 

    Google Scholar 

  • 28.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 29.

    Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Pei, Y., Valcu, M. & Kempenaers, B. Interference competition pressure predicts the number of avian predators that shifted their timing of activity. Proc. R. Soc. B 285, 20180744 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. J. Anthropol. Sci. 84, 7–32 (2006).

    Google Scholar 

  • 33.

    Veilleux, C. C. & Cummings, M. E. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215, 4085 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107 (2009).

    Article 

    Google Scholar 

  • 35.

    Voigt, C. C. & Lewanzik, D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc. R. Soc. B 278, 2311–2317 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Rydell, J. & Speakman, J. R. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biol. J. Linn. Soc. 54, 183–191 (1995).

    Article 

    Google Scholar 

  • 37.

    Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).

    Article 

    Google Scholar 

  • 38.

    Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Muul, I. & Lim, B. L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology of Arboreal Folivores (ed. Montgomery, G. G.) 361–368 (Smithsonian Institution, 1978).

  • 40.

    Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279, 4962–4968 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain. Behav. Evol. 75, 195–203 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).

    Article 

    Google Scholar 

  • 43.

    Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).

    Article 

    Google Scholar 

  • 44.

    Benítez-López, A. Animals feel safer from humans in the dark. Science 360, 1185–1186 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Rabaiotti, D. & Woodroffe, R. Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore. Oecologia 189, 587–599 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370, 20140133 (2015).

    Article 

    Google Scholar 

  • 47.

    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Campbell, G. S. & Norman, J. M. Animals and their environment. In An Introduction to Environmental Biophysics (eds. Campbell, G. S. & Norman, J. M.) 185–207 (Springer, 1998).

  • 50.

    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).

    Article 

    Google Scholar 

  • 52.

    Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).

    Article 

    Google Scholar 

  • 53.

    Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).

    Article 

    Google Scholar 

  • 54.

    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).

    Article 

    Google Scholar 

  • 55.

    Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B 370, 20140005 (2015).

    Article 

    Google Scholar 

  • 56.

    Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World, Vol. 1–4 & 6–9 (Lynx Edicions, 2001).

  • 59.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).

  • 60.

    Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. R. Soc. B 281, 20141173 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).

    Article 

    Google Scholar 

  • 63.

    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Article 

    Google Scholar 

  • 64.

    Taugourdeau, S., Villerd, J., Plantureux, S., Huguenin-Elie, O. & Amiaud, B. Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data. Ecol. Evol. 4, 944–958 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Filho, J. A. F. D., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66, 1079–1090 (2012).

    Article 

    Google Scholar 

  • 66.

    Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 67.

    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).

    Article 

    Google Scholar 

  • 68.

    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Chemists gain new insights into the behavior of water in an influenza virus channel

    Mutability of demographic noise in microbial range expansions