Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).
Google Scholar
Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).
Google Scholar
Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).
Google Scholar
Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).
Google Scholar
DeCoursey, P. J. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33 (2004).
Google Scholar
Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. In Neurobiology of Circadian Timing, Vol. 199 (eds. Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G.) 281–304 (Elsevier, 2012).
Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).
Google Scholar
Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).
Google Scholar
Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).
Google Scholar
Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).
Google Scholar
Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).
Google Scholar
Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).
Google Scholar
Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).
Google Scholar
Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).
Google Scholar
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
Google Scholar
Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).
Google Scholar
Ankel-Simons, F. & Rasmussen, D. T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137, 100–117 (2008).
Google Scholar
Russo, D., Maglio, G., Rainho, A., Meyer, C. F. J. & Palmeirim, J. M. Out of the dark: diurnal activity in the bat Hipposideros ruber on São Tomé island (West Africa). Mamm. Biol. 76, 701–708 (2011).
Google Scholar
Halle, S. Ecological relevance of daily activity patterns. In Activity Patterns in Small Mammals: An Ecological Approach (eds. Halle, S. & Stenseth, N. C.) 67–90 (Springer, 2000).
Mammola, S. Assessing similarity of n-dimensional hypervolumes: which metric to use? J. Biogeogr. 46, 2012–2023 (2019).
Google Scholar
Langerhans, R. B. & DeWitt, T. J. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349 (2004).
Google Scholar
Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).
Google Scholar
Bielby, J. et al. The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).
Google Scholar
Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).
Google Scholar
Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).
Google Scholar
Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).
Google Scholar
Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 20, 479–490 (2006).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).
Google Scholar
Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).
Google Scholar
Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).
Google Scholar
Pei, Y., Valcu, M. & Kempenaers, B. Interference competition pressure predicts the number of avian predators that shifted their timing of activity. Proc. R. Soc. B 285, 20180744 (2018).
Google Scholar
Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. J. Anthropol. Sci. 84, 7–32 (2006).
Veilleux, C. C. & Cummings, M. E. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215, 4085 (2012).
Google Scholar
le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107 (2009).
Google Scholar
Voigt, C. C. & Lewanzik, D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc. R. Soc. B 278, 2311–2317 (2011).
Google Scholar
Rydell, J. & Speakman, J. R. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biol. J. Linn. Soc. 54, 183–191 (1995).
Google Scholar
Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).
Google Scholar
Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).
Google Scholar
Muul, I. & Lim, B. L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology of Arboreal Folivores (ed. Montgomery, G. G.) 361–368 (Smithsonian Institution, 1978).
Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279, 4962–4968 (2012).
Google Scholar
Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain. Behav. Evol. 75, 195–203 (2010).
Google Scholar
Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).
Google Scholar
Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).
Google Scholar
Benítez-López, A. Animals feel safer from humans in the dark. Science 360, 1185–1186 (2018).
Google Scholar
Rabaiotti, D. & Woodroffe, R. Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore. Oecologia 189, 587–599 (2019).
Google Scholar
Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370, 20140133 (2015).
Google Scholar
McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).
Google Scholar
Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).
Google Scholar
Campbell, G. S. & Norman, J. M. Animals and their environment. In An Introduction to Environmental Biophysics (eds. Campbell, G. S. & Norman, J. M.) 185–207 (Springer, 1998).
Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).
Google Scholar
Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).
Google Scholar
Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).
Google Scholar
Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).
Google Scholar
Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).
Google Scholar
Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B 370, 20140005 (2015).
Google Scholar
Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).
Google Scholar
Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).
Google Scholar
Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World, Vol. 1–4 & 6–9 (Lynx Edicions, 2001).
R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).
Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. R. Soc. B 281, 20141173 (2014).
Google Scholar
Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).
Google Scholar
Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).
Google Scholar
Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
Google Scholar
Taugourdeau, S., Villerd, J., Plantureux, S., Huguenin-Elie, O. & Amiaud, B. Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data. Ecol. Evol. 4, 944–958 (2014).
Google Scholar
Filho, J. A. F. D., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66, 1079–1090 (2012).
Google Scholar
Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).
Google Scholar
Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).
Google Scholar
Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).
Google Scholar
Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
Google Scholar
Source: Ecology - nature.com