in

Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth

  • 1.

    Davidson, N., Fluet-Chouinard, E. & Finlayson, M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).

    Article 

    Google Scholar 

  • 2.

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).

    Article 

    Google Scholar 

  • 3.

    Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B 363, 815–830 (2008).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 13835 (2016).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. & Trimmer, M. J. G. C. B. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Change Biol. 17, 1225–1234 (2011).

    Article 

    Google Scholar 

  • 6.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • 7.

    Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).

    Article 

    Google Scholar 

  • 8.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Comer-Warner, S. A. et al. Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties. Nat. Commun. 9, 2803 (2018).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. L. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).

    Article 

    Google Scholar 

  • 11.

    Xu, X. et al. Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Riley, W. et al. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8, 1925–1953 (2011).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Koffi, E. N., Bergamaschi, P., Alkama, R. & Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 6, eaay4444 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob. Biogeochem. Cycles 14, 745–765 (2000).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Christensen, T. R. et al. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 1414 (2003).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Vicca, S., Janssens, I. A., Flessa, H., Fiedler, S. & Jungkunst, H. F. Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7, 465–476 (2009).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Leroy, F. et al. Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands. Soil Biol. Biochem. 107, 164–167 (2017).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).

    Google Scholar 

  • 26.

    Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Zhu, J. et al. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrol. Earth Syst. Sci. 21, 6289–6305 (2017).

    Article 

    Google Scholar 

  • 28.

    Amatya, D., Chescheir, G., Williams, T., Skaggs, R. & Tian, S. Long–term water table dynamics of forested wetlands: drivers and their effects on wetland hydrology in the Southeastern Atlantic Coastal Plain. Wetlands 40, 65–79 (2020).

    Article 

    Google Scholar 

  • 29.

    Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dynam. 37, 253–278 (2011).

    Article 

    Google Scholar 

  • 30.

    Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Moore, T. & Roulet, N. T. Methane flux: water table relations in northern wetlands. Geophys. Res. Lett. 20, 587–590 (1993).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Yang, J. et al. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol. Biochem. 61, 52–60 (2013).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Moore, T. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Lafleur, P. M., Moore, T. R., Roulet, N. T. & Frolking, S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619–629 (2005).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Matysek, M. et al. Impact of fertiliser, water table, and warming on celery yield and CO2 and CH4 emissions from fenland agricultural peat. Sci. Total Environ. 667, 179–190 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Yang, G. et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol. Biochem. 78, 83–89 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Zhao, M. et al. Responses of soil CO2 and CH4 emissions to changing water table level in a coastal wetland. J. Clean. Prod. 269, 122316 (2020).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Olefeldt, D. et al. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability. Glob. Change Biol. 23, 2428–2440 (2017).

    Article 

    Google Scholar 

  • 41.

    Turetsky, M. R. et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J. Geophys. Res. Biogeosci. 113, G00A10 (2008).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627.

  • 43.

    Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).

    Article 

    Google Scholar 

  • 44.

    Evans et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    CAS 

    Google Scholar 

  • 45.

    Chen, H., Zou, J., Cui, J., Nie, M. & Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 120, 24–27 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Humpenoeder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).

    Article 

    Google Scholar 

  • 47.

    Manton, M. et al. Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman river basin as a case study. Land 10, 174 (2021).

    Article 

    Google Scholar 

  • 48.

    Gedney, N., Cox, P. & Huntingford, C. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, L20503 (2004).

    Article 
    CAS 

    Google Scholar 

  • 49.

    Spahni, R. et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8, 1643–1665 (2011).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Matthews, G. V. T. The Ramsar Convention on Wetlands: Its History and Development (Ramsar Convention Bureau, 1993)

  • 51.

    Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS (Springer Science & Business Media, 2006).

  • 52.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  • 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org

  • 54.

    Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).

    Article 

    Google Scholar 

  • 55.

    Payton, M. E., Greenstone, M. H. & Schenker, N. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J. Insect Sci. 3, 34 (2003).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Gene drives gaining speed

    Principles of seed banks and the emergence of complexity from dormancy