Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Liang, S., Naumoff, K. & Scott, J. C. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect. 115(8), 1216–1223. https://doi.org/10.1289/ehp.9806 (2007).
Google Scholar
Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I. & Rinaldo, A. On the space-time evolution of a cholera epidemic. Water Resour. Res. 44(1), 1–8. https://doi.org/10.1029/2007WR006211 (2008).
Google Scholar
Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. Hydrology of malaria: Model development and application to a Sahelian village. Water Resour. Res. 44(12), 1–26. https://doi.org/10.1029/2008WR006917 (2008).
Google Scholar
Perez-Saez, J., Mande, T., Ceperley, N., Bertuzzo, E., Mari, L., Gatto, M. & Rinaldo, A. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proc. Natl. Acad. Sci. USA 113(23), 6427–6432. https://doi.org/10.1073/pnas.1602251113 (2016).
Google Scholar
van Dijk, J., Sargison, N. D., Kenyon, F. & Skuce, P. J. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 4(3), 377–392. https://doi.org/10.1017/s1751731109990991 (2010).
Google Scholar
Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., … Michael, E. Climate, environmental and socio-economic change: weighing up the balance in vector- borne disease transmission. Philos. Trans. R. Soc. B 370, 1665. https://doi.org/10.1098/rstb.2013.0551 (2015).
Cable, J., Barber, I., Boag, B., Ellison, A. R., Morgan, E. R., Murray, K., … Booth, M. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. B 372, 1719. https://doi.org/10.1098/rstb.2016.0088 (2017).
McIntyre, K. M., Setzkorn, C., Hepworth, P. J., Morand, S., Morse, A. P. & Baylis, M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-06948-9 (2017).
Google Scholar
Garchitorena, A., Sokolow, S. H., Roche, B., Ngonghala, C. N., Jocque, M., Lund, A., … De Leo, G. A. Disease ecology, health and the environment: a framework to account for ecological and socio- economic drivers in the control of neglected tropical diseases. Phil. Trans. R. Soc. B, 372, 20160128. https://doi.org/10.1098/rstb.2016.0128 (2017).
Webster, J. P., Molyneux, D. H., Hotez, P. J. & Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. B 369(1645), 20130434. https://doi.org/10.1098/rstb.2013.0434 (2014).
Google Scholar
Beesley, N. J., Caminade, C., Charlier, J., Flynn, R. J., Hodgkinson, J. E., Martinez-Moreno, A., … Williams, D. J. L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 65, 199–216 https://doi.org/10.1111/tbed.12682 (2018).
Kamaludeen, J., Graham-Brown, J., Stephens, N., Miller, J., Howell, A., Beesley, N. J., … Williams, D. Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales. Vet. Rec. 184(16), 502–502. https://doi.org/10.1136/vr.105209 (2019).
WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2019).
Mas-Coma, S., Valero, M. A. & Bargues, M. D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 163(4), 264–280. https://doi.org/10.1016/j.vetpar.2009.03.024 (2009).
Google Scholar
Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341(6145), 514–519. https://doi.org/10.1126/science.1239401 (2013).
Google Scholar
Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Ruiz Carrascal, D. & Pascual, M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343(6175), 1154–1159. https://doi.org/10.1126/science.1244325 (2014).
Google Scholar
Sokolow, S. H., Jones, I. J., Jocque, M., La, D., Cords, O., Knight, A., … De Leo, G. A. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail- eating river prawns. Phiosl. Trans. R. Soc. B 372(1722), 20160127. https://doi.org/10.1098/rstb.2016.0127 (2017).
Morgan, E. R., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., von Samson-Himmelstjerna, G., … Vercruysse, J. Global change and helminth infections in grazing ruminants in Europe: Impacts, trends and sustainable solutions. Agriculture 3(3), 484–502. https://doi.org/10.3390/agriculture3030484. (2013).
Prüss-Ustün, A., Wolf, J., Corvalan, C., Bos, R., & Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks (World Health Organisation, 2016).
Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M. & Colford, J. M. Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect. 110(8), 783–790. https://doi.org/10.1289/ehp.02110783 (2002).
Google Scholar
Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., … Grenfell, B. T.. Epidemic dynamics at the human–animal interface. Science 326(5958), 1362–1367. https://doi.org/10.1126/science.1177345 (2009).
Mellor, J. E., Levy, K., Zimmerman, J., Elliott, M., Bartram, J., Carlton, E., … Nelson, K.. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. Science of the Total Environment, 548–549, 82–90. https://doi.org/10.1016/j.scitotenv.2015.12.087 (2016).
Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23. https://doi.org/10.1016/j.envint.2015.09.007 (2016).
Google Scholar
Beltrame, L., Dunne, T., Vineer, H. R., Walker, J. G., Morgan, E. R., Vickerman, P., … Wagener, T. A mechanistic hydro-epidemiological model of liver fluke risk. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0072 (2018).
Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).
Google Scholar
Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., … Winter, L. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. https://doi.org/10.1016/j.envsoft.2008.11.010 (2009).
Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., … Wilson, J. S. The future of hydrology: An evolving science for a changing world. Water Resour. Research, 46, W05301. https://doi.org/10.1029/2009WR008906 (2010).
Liang, S., Seto, E. Y. W., Remais, J. V, Zhong, B., Yang, C., Hubbard, A., … Spear, R. C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 104(17), 7110–7115. https://doi.org/10.1073/pnas.0701878104 (2007).
Mari, L., Ciddio, M., Casagrandi, R., Perez-Saez, J., Bertuzzo, E., Rinaldo, A., … Gatto, M. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol. 432, 87–99. https://doi.org/10.1016/j.jtbi.2017.08.015 (2017).
Knubben-Schweizer, G., Rüegg, S., Torgerson, P., Rapsch, C., Grimm, F., Hässig, M., … Braun, U. Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Vet. J. 186, 188–191. https://doi.org/10.1016/j.tvjl.2009.08.003 (2010).
McCann, C. M., Baylis, M. & Williams, D. J. L. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int. J. Parasitol. 40(9), 1021–1028. https://doi.org/10.1016/j.ijpara.2010.02.009 (2010).
Google Scholar
Selemetas, N., Phelan, P., O’Kiely, P. & de Waal, T. The effects of farm management practices on liver fluke prevalence and the current internal parasite control measures employed on Irish dairy farms. Vet. Parasitol. 207(3–4), 228–240. https://doi.org/10.1016/j.vetpar.2014.12.010 (2015).
Google Scholar
Ollerenshaw, C. B. The approach to forecasting the incidence of fascioliasis over England and Wales 1958–1962. Agric. Meteorol. 3(1–2), 35–53. https://doi.org/10.1016/0002-1571(66)90004-5 (1966).
Google Scholar
Fox, N. J., White, P. C. L., McClean, C. J., Marion, G., Evans, A. & Hutchings, M. R. Predicting impacts of climate change on fasciola hepatica risk. PLoS ONE 6(1), e16126. https://doi.org/10.1371/journal.pone.0016126 (2011).
Google Scholar
Caminade, C., van Dijk, J., Baylis, M. & Williams, D. Modelling recent and future climatic suitability for fasciolosis in Europe. Geospat. Health 9(2), 301–308. https://doi.org/10.4081/gh.2015.352 (2015).
Google Scholar
Lo Iacono, G., Armstrong, B., Fleming, L. E., Elson, R., Kovats, S., Vardoulakis, S. & Nichols, G. L. Challenges in developing methods for quantifying the effects of weather and climate on water-associated diseases: A systematic review. PLoS Negl. Trop. Dis. 11(6), e0005659. https://doi.org/10.1371/journal.pntd.0005659 (2017).
Google Scholar
Lo, N. C., Gurarie, D., Yoon, N., Coulibaly, J. T., Bendavid, E., Andrews, J. R. & King, C. H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 115(4), E584–E591. https://doi.org/10.1073/pnas.1708729114 (2018).
Google Scholar
Williams, D. J. L., Howell, A., Graham-Brown, J., Kamaludeen, J., & Smith, D. Liver fluke—An overview for practitioners. Cattle Pract. 22 (2014).
Pritchard, G. C., Forbes, A. B., Williams, D. J. L., Salimi-Bejestani, M. R. & Daniel, R. G. Emergence of fasciolosis in cattle in East Anglia. Vet. Rec. 157, 578–582. https://doi.org/10.1136/vr.157.19.578 (2005).
Google Scholar
Kenyon, F., Sargison, N. D., Skuce, P. J. & Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 163(4), 293–297. https://doi.org/10.1016/j.vetpar.2009.03.027 (2009).
Google Scholar
McCann, C. M., Baylis, M. & Williams, D. J. L. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet. Rec. 166(20), 612–617. https://doi.org/10.1136/vr.b4836 (2010).
Google Scholar
Ollerenshaw, C. B. & Rowlands, W. T. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 71(29), 591–598 (1959).
Fairweather, I. & Boray, J. C. Fasciolicides: Efficacy, actions, resistance and its management. Vet. J. 158, 81–112 (1999).
Google Scholar
Morgan, E. R., Hosking, B. C., Burston, S., Carder, K. M., Hyslop, A. C., Pritchard, L. J., … Coles, G. C. A survey of helminth control practices on sheep farms in Great Britain and Ireland. Vet. J. 192(3), 390–397. https://doi.org/10.1016/j.tvjl.2011.08.004 (2012).
Mitchell, G. Update on Fasciolosis in cattle and sheep. Practice 24(7), 378–385 (2002).
Google Scholar
Skuce, P. J. & Zadoks, R. N. Liver fluke A growing threat to UK livestock production. Cattle Pract. 21(2), 138–149 (2013).
Scotland’s RUral College (SRUC). Technical Note 677: Treatment and Control of Liver Fluke (2016).
National Animal Disease Information System (NADIS). https://www.nadis.org.uk/parasite-forecast.aspx (2019).
Markus, S. B., Bailey, D. W. & Jensen, D. Comparison of electric fence and a simulated fenceless control system on cattle movements. Livestock Sci. 170, 203–209. https://doi.org/10.1016/j.livsci.2014.10.011 (2014).
Marini, D., Llewellyn, R., Belson, S. & Lee, C. Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals 8(3), 31. https://doi.org/10.3390/ani8030031 (2018).
Marshall, E. J. P., Wade, P. M. & Clare, P. Land drainage channels in England and Wales. Geogr. J. 144(2), 254–263 (1978).
Google Scholar
Robinson, M. & Armstrong, A. C. The extent of agricultural field drainage in England and Wales, 1971–80. Trans. Inst. Brit. Geogr. 13(1), 19–28 (1988).
Google Scholar
Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrol. Earth Syst. Sci. 21(2), 1189–1224. https://doi.org/10.5194/hess-21-1189-2017 (2017).
Google Scholar
National River Flow Archive (NRFA). NERC CEH. https://nrfa.ceh.ac.uk/ (2019).
Intermap Technologies. NEXTMap British Digital Terrain 50m resolution (DTM10) Model Data by Intermap, NERC Earth Observation Data Centre. http://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2 (2009).
Coxon, G., Freer, J., Lane, R., Dunne, T., Howden, N. J. K., Quinn, N., … Woods, R. DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geosci. Model Dev. 12, 2285–2306. https://doi.org/10.5194/gmd-2018-205 (2019).
Beven, K., Lamb, R., Quinn, P., Romanowicz, R. & Freer, J. TOPMODEL. In Computer Models of Watershed Hydrology (ed. Sing, V. P.) 627–668 (Water Resource Publications, 1995).
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V. & Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn. 6(1), 17–43. https://doi.org/10.5194/esd-6-17-2015 (2015).
Google Scholar
Shen, C., Niu, J. & Phanikumar, M. S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour. Res. 49(5), 2552–2572. https://doi.org/10.1002/wrcr.20189 (2013).
Google Scholar
MetOffice. https://www.metoffice.gov.uk/research/climate/maps-and-data (2017).
Source: Ecology - nature.com