in

Distributions of photosynthetic traits, shoot growth, and anti-herbivory defence within a canopy of Quercus serrata in different soil nutrient conditions

  • 1.

    Niinemets, Ü. Within-canopy variations in functional leaf traits: Structural, chemical and ecological controls and diversity of responses. In Canopy Photosynthesis: From Basics to Applications (eds Hikosaka, K. et al.) 101–142 (Springer, Dordrecht, 2016).

    Chapter 

    Google Scholar 

  • 2.

    Field, C. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56, 341–347 (1983).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Hikosaka, K. et al. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann. Bot. 118(2), 239–247 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Kitao, M. et al. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci. Rep. 8, 503 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Lambers, H., Chapin, F. S. III & Pons, T. L. Ecological biochemistry: Allelopathy and defense against herbivores. In Plant Physiological Ecology 2nd edn (eds Lambers, H. et al.) 445–477 (Springer, New York, 2008).

    Chapter 

    Google Scholar 

  • 6.

    Bachofen, C., D’Odorico, P. & Buchmenn, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Mole, S., Ross, J. A. M. & Waterman, P. G. Light-induced variation in phenolic levels in foliage of rain-forest plants, I. Chemical changes. J. Chem. Ecol. 14(1), 1–21 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Yamasaki, M. & Kikuzawa, K. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137(2), 226–232 (2003).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Niinemets, Ü., Ellsworth, D. S., Lukjanova, A. & Tobias, M. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol. 21, 1231–1244 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Niinemets, Ü., Cescatti, A., Lukjanova, A., Tobias, M. & Truus, L. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agric. For. Meteorol. 111, 121–140 (2002).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Ishii, H., Kitaoka, S., Fujisawa, T., Maruyama, Y. & Koike, T. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Tree Physiol. 27, 1595–1605 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Bryant, J. P., Chapin, F. S. III. & Klein, D. R. Carbon/nutrient balance of boreal plants to vertebrate herbivory. Oikos 40, 357–368 (1983).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. III. Resource availability and plant antiherbivore defense. Science 230(4728), 895–899 (1985).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Herms, D. A. & Mattson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 63(3), 283–335 (1992).

    Article 

    Google Scholar 

  • 15.

    Sun, Y. et al. Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. Sci. Total Environ. 719, 137442 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Kolstad, A. L., Asplund, J., Nilsson, M.-C., Ohlson, M. & Nybakken, L. Soil fertility and charcoal as determinants of growth and allocation of secondary plant metabolites in seedlings of European beech and Norway spruce. Environ. Exp. Bot. 131, 39–46 (2016).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds. Ann. Bot. 117, 349–361 (2016).

    PubMed 

    Google Scholar 

  • 18.

    Warren, C. R. & Adams, M. A. Distribution of N, rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24(6), 597–609 (2001).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Koike, T., Kitao, M., Maruyama, Y., Mori, S. & Lei, T. T. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiol. 21, 951–958 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Iio, A., Fukasawa, H., Nose, Y., Kato, S. & Kakubari, Y. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation. Tree Physiol. 25, 533–544 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Scartazza, A., Baccio, D. D., Bertolotto, P., Gavrichkova, O. & Matteucci, G. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: Leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol. 36, 1060–1076 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    McClure, J. W. Physiology of flavonoids in plants. In Plant Flavonoids in Biology and Medicine (eds Cody, V. et al.) 77–85 (Alan R. Liss Inc, New York, 1985).

    Google Scholar 

  • 23.

    Løvdal, T., Plsen, K. M., Slimestad, R., Verheul, M. & Lillo, C. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71, 605–613 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Christopoulos, M. V. & Tsantili, E. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biol. Technol. 104, 17–25 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Tanaka, K. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).

    Article 

    Google Scholar 

  • 26.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 27.

    Rowe, W. J. & Potter, D. A. Vertical stratification of feeding by Japanese beetle within linden tree canopies: Selective foraging or height per se?. Oecologia 108, 459–466 (1996).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 28.

    Le Corff, J. & Marquis, R. J. Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecol. Entomol. 24, 46–58 (1999).

    Article 

    Google Scholar 

  • 29.

    Jamieson, M. A., Schwartzberg, E. G., Raffa, K. F., Reich, P. B. & Lindroth, R. L. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob. Chang. Biol. 21, 2698–2710 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Tripler, C. E., Canham, C. D., Inouye, R. S. & Schnurr, J. L. Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. Oecologia 133, 517–524 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Galloway, J. N. et al. Nitrogen cycles: Past, present and future. Biogeochemistry 70, 153–226 (2004).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Kimura, S. D., Saito, M., Hara, H., Xu, Y. H. & Okazaki, M. Comparison of nitrogen dry deposition on cedar and oak leaves in the Tama hills using foliar rinsing method. Water Air Soil Pollut. 202, 369–377 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Imamura, N., Tanaka, N., Ohte, N. & Yamamoto, H. Natural transfer with rainfall in the canopies of a broad-leaved deciduous forest in okuchichibu. J. Jpn. For. Soc. 94, 74–83 (2012) ((In Japanese)).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Ogasawara, R., Yamamoto, T. & Arita, T. Biomass and production of the Konara (Quercus serrata) secondary stand. Hardwood Res. 4, 257–262 (1987) ((In Japanese)).

    Google Scholar 

  • 35.

    Kitao, M. et al. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Sci. Rep. 6, 32549 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Kume, A., Nasahara, K. N., Nagai, S. & Muraoka, H. The ratio transmitted near-infrared radiation to photosynthetically active radiation (PAR) increases in proportion to the adsorbed PAR in the canopy. J. Plant Res. 124(1), 99–106 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Ivančič, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18(9), 1143–1147 (1984).

    Article 

    Google Scholar 

  • 38.

    Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46 (1945).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27, 31–36 (1962).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Watanabe, M., Ryu, K., Kita, K., Takagi, K. & Koike, T. Effects of nitrogen load on the growth and photosynthesis of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil. Environ. Exp. Bot 83, 73–81 (2012).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Watanabe, M. et al. Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ. Pollut. 174, 50–56 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 43.

    Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32(2), 85–100 (1992).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33, 213–217 (1985).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Bate-Smith, E. C. Astringent tannins of Acer species. Phytochemistry 16, 1421–1426 (1977).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Clegg, M. S., Keen, C. L., Lönnerdal, B. & Hurley, L. S. Influence of ashing techniques on the analysis of trace elements in animal tissue I. Wet Ashing. Biol. Trace Elem. Res. 3, 107–115 (1981).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Takashima, T., Hikosaka, K. & Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27, 1047–1054 (2004).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Vogan, P. J. & Sage, R. F. Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169, 341–352 (2012).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Evans, J. R. & Seemann, J. R. The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences and control. In Photosynthesis (ed. Briggs, W. R.) 183–205 (Alan R Liss Inc, New York, 1989).

    Google Scholar 

  • 50.

    Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).

    Article 

    Google Scholar 

  • 51.

    Niinemets, Ü., Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973–993 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Migita, C., Chiba, Y. & Tange, T. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol. 27, 63–70 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Kitao, M. et al. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ. Pollut. 157, 537–544 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    R Development Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. (2018).

  • 55.

    Imaizumi, T. An introductory guide to statistical analysis-generalized linear models for proportion data using R. J. Weed Sci. Tech. 55(4), 275–286 (2010) ((In Japanese)).

    Article 

    Google Scholar 

  • 56.

    Underwood, A. J. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev. 19, 513–605 (1981).

    Google Scholar 


  • Source: Ecology - nature.com

    Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics

    Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island