Niinemets, Ü. Within-canopy variations in functional leaf traits: Structural, chemical and ecological controls and diversity of responses. In Canopy Photosynthesis: From Basics to Applications (eds Hikosaka, K. et al.) 101–142 (Springer, Dordrecht, 2016).
Google Scholar
Field, C. Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56, 341–347 (1983).
Google Scholar
Hikosaka, K. et al. A meta-analysis of leaf nitrogen distribution within plant canopies. Ann. Bot. 118(2), 239–247 (2016).
Google Scholar
Kitao, M. et al. Canopy nitrogen distribution is optimized to prevent photoinhibition throughout the canopy during sun flecks. Sci. Rep. 8, 503 (2018).
Google Scholar
Lambers, H., Chapin, F. S. III & Pons, T. L. Ecological biochemistry: Allelopathy and defense against herbivores. In Plant Physiological Ecology 2nd edn (eds Lambers, H. et al.) 445–477 (Springer, New York, 2008).
Google Scholar
Bachofen, C., D’Odorico, P. & Buchmenn, N. Light and VPD gradients drive foliar nitrogen partitioning and photosynthesis in the canopy of European beech and silver fir. Oecologia 192, 323–339 (2020).
Google Scholar
Mole, S., Ross, J. A. M. & Waterman, P. G. Light-induced variation in phenolic levels in foliage of rain-forest plants, I. Chemical changes. J. Chem. Ecol. 14(1), 1–21 (1988).
Google Scholar
Yamasaki, M. & Kikuzawa, K. Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137(2), 226–232 (2003).
Google Scholar
Niinemets, Ü., Ellsworth, D. S., Lukjanova, A. & Tobias, M. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol. 21, 1231–1244 (2001).
Google Scholar
Niinemets, Ü., Cescatti, A., Lukjanova, A., Tobias, M. & Truus, L. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agric. For. Meteorol. 111, 121–140 (2002).
Google Scholar
Ishii, H., Kitaoka, S., Fujisawa, T., Maruyama, Y. & Koike, T. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Tree Physiol. 27, 1595–1605 (2007).
Google Scholar
Bryant, J. P., Chapin, F. S. III. & Klein, D. R. Carbon/nutrient balance of boreal plants to vertebrate herbivory. Oikos 40, 357–368 (1983).
Google Scholar
Coley, P. D., Bryant, J. P. & Chapin, F. S. III. Resource availability and plant antiherbivore defense. Science 230(4728), 895–899 (1985).
Google Scholar
Herms, D. A. & Mattson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 63(3), 283–335 (1992).
Google Scholar
Sun, Y. et al. Negative effects of the simulated nitrogen deposition on plant phenolic metabolism: A meta-analysis. Sci. Total Environ. 719, 137442 (2020).
Google Scholar
Kolstad, A. L., Asplund, J., Nilsson, M.-C., Ohlson, M. & Nybakken, L. Soil fertility and charcoal as determinants of growth and allocation of secondary plant metabolites in seedlings of European beech and Norway spruce. Environ. Exp. Bot. 131, 39–46 (2016).
Google Scholar
Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds. Ann. Bot. 117, 349–361 (2016).
Google Scholar
Warren, C. R. & Adams, M. A. Distribution of N, rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant Cell Environ. 24(6), 597–609 (2001).
Google Scholar
Koike, T., Kitao, M., Maruyama, Y., Mori, S. & Lei, T. T. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. Tree Physiol. 21, 951–958 (2001).
Google Scholar
Iio, A., Fukasawa, H., Nose, Y., Kato, S. & Kakubari, Y. Vertical, horizontal and azimuthal variations in leaf photosynthetic characteristics within a Fagus crenata crown in relation to light acclimation. Tree Physiol. 25, 533–544 (2005).
Google Scholar
Scartazza, A., Baccio, D. D., Bertolotto, P., Gavrichkova, O. & Matteucci, G. Investigating the European beech (Fagus sylvatica L.) leaf characteristics along the vertical canopy profile: Leaf structure, photosynthetic capacity, light energy dissipation and photoprotection mechanisms. Tree Physiol. 36, 1060–1076 (2016).
Google Scholar
McClure, J. W. Physiology of flavonoids in plants. In Plant Flavonoids in Biology and Medicine (eds Cody, V. et al.) 77–85 (Alan R. Liss Inc, New York, 1985).
Løvdal, T., Plsen, K. M., Slimestad, R., Verheul, M. & Lillo, C. Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71, 605–613 (2010).
Google Scholar
Christopoulos, M. V. & Tsantili, E. Participation of phenylalanine ammonia-lyase (PAL) in increased phenolic compounds in fresh cold stressed walnut (Juglans regia L.) kernels. Postharvest Biol. Technol. 104, 17–25 (2015).
Google Scholar
Tanaka, K. et al. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol. 26, 865–873 (2006).
Google Scholar
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588 (2009).
Google Scholar
Rowe, W. J. & Potter, D. A. Vertical stratification of feeding by Japanese beetle within linden tree canopies: Selective foraging or height per se?. Oecologia 108, 459–466 (1996).
Google Scholar
Le Corff, J. & Marquis, R. J. Differences between understorey and canopy in herbivore community composition and leaf quality for two oak species in Missouri. Ecol. Entomol. 24, 46–58 (1999).
Google Scholar
Jamieson, M. A., Schwartzberg, E. G., Raffa, K. F., Reich, P. B. & Lindroth, R. L. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Glob. Chang. Biol. 21, 2698–2710 (2015).
Google Scholar
Tripler, C. E., Canham, C. D., Inouye, R. S. & Schnurr, J. L. Soil nitrogen availability, plant luxury consumption, and herbivory by white-tailed deer. Oecologia 133, 517–524 (2002).
Google Scholar
Galloway, J. N. et al. Nitrogen cycles: Past, present and future. Biogeochemistry 70, 153–226 (2004).
Google Scholar
Kimura, S. D., Saito, M., Hara, H., Xu, Y. H. & Okazaki, M. Comparison of nitrogen dry deposition on cedar and oak leaves in the Tama hills using foliar rinsing method. Water Air Soil Pollut. 202, 369–377 (2009).
Google Scholar
Imamura, N., Tanaka, N., Ohte, N. & Yamamoto, H. Natural transfer with rainfall in the canopies of a broad-leaved deciduous forest in okuchichibu. J. Jpn. For. Soc. 94, 74–83 (2012) ((In Japanese)).
Google Scholar
Ogasawara, R., Yamamoto, T. & Arita, T. Biomass and production of the Konara (Quercus serrata) secondary stand. Hardwood Res. 4, 257–262 (1987) ((In Japanese)).
Kitao, M. et al. Increased phytotoxic O3 dose accelerates autumn senescence in an O3-sensitive beech forest even under the present-level O3. Sci. Rep. 6, 32549 (2016).
Google Scholar
Kume, A., Nasahara, K. N., Nagai, S. & Muraoka, H. The ratio transmitted near-infrared radiation to photosynthetically active radiation (PAR) increases in proportion to the adsorbed PAR in the canopy. J. Plant Res. 124(1), 99–106 (2011).
Google Scholar
Ivančič, I. & Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 18(9), 1143–1147 (1984).
Google Scholar
Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59(1), 39–46 (1945).
Google Scholar
Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27, 31–36 (1962).
Google Scholar
Watanabe, M., Ryu, K., Kita, K., Takagi, K. & Koike, T. Effects of nitrogen load on the growth and photosynthesis of hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi) grown on serpentine soil. Environ. Exp. Bot 83, 73–81 (2012).
Google Scholar
Watanabe, M. et al. Photosynthetic traits of Siebold’s beech and oak saplings grown under free air ozone exposure in northern Japan. Environ. Pollut. 174, 50–56 (2013).
Google Scholar
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
Google Scholar
Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A. W. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32(2), 85–100 (1992).
Google Scholar
Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 33, 213–217 (1985).
Google Scholar
Bate-Smith, E. C. Astringent tannins of Acer species. Phytochemistry 16, 1421–1426 (1977).
Google Scholar
Clegg, M. S., Keen, C. L., Lönnerdal, B. & Hurley, L. S. Influence of ashing techniques on the analysis of trace elements in animal tissue I. Wet Ashing. Biol. Trace Elem. Res. 3, 107–115 (1981).
Google Scholar
Takashima, T., Hikosaka, K. & Hirose, T. Photosynthesis or persistence: Nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27, 1047–1054 (2004).
Google Scholar
Vogan, P. J. & Sage, R. F. Effects of low atmospheric CO2 and elevated temperature during growth on the gas exchange responses of C3, C3–C4 intermediate, and C4 species from three evolutionary lineages of C4 photosynthesis. Oecologia 169, 341–352 (2012).
Google Scholar
Evans, J. R. & Seemann, J. R. The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences and control. In Photosynthesis (ed. Briggs, W. R.) 183–205 (Alan R Liss Inc, New York, 1989).
Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).
Google Scholar
Niinemets, Ü., Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973–993 (2014).
Google Scholar
Migita, C., Chiba, Y. & Tange, T. Seasonal and spatial variations in leaf nitrogen content and resorption in a Quercus serrata canopy. Tree Physiol. 27, 63–70 (2007).
Google Scholar
Kitao, M. et al. Effects of chronic elevated ozone exposure on gas exchange responses of adult beech trees (Fagus sylvatica) as related to the within-canopy light gradient. Environ. Pollut. 157, 537–544 (2009).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. (2018).
Imaizumi, T. An introductory guide to statistical analysis-generalized linear models for proportion data using R. J. Weed Sci. Tech. 55(4), 275–286 (2010) ((In Japanese)).
Google Scholar
Underwood, A. J. Techniques of analysis of variance in experimental marine biology and ecology. Oceanogr. Mar. Biol. Ann. Rev. 19, 513–605 (1981).
Source: Ecology - nature.com