in

eDNA metabarcoding for biodiversity assessment, generalist predators as sampling assistants

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 3.

    Duelli, P., Obrist, M. K. & Schmatz, D. R. Biodiversity evaluation in agricultural landscape: Above-ground insects. Argicult. Ecosyst. Environ. 74, 33–64 (1999).

    Article 

    Google Scholar 

  • 4.

    Depraetere, M. et al. Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecol. Indic. 13, 46–54 (2012).

    Article 

    Google Scholar 

  • 5.

    Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: The integration of citizen science and artificial intelligence. Animals 10, 132 (2020).

    Article 

    Google Scholar 

  • 6.

    Roberts, T. E., Bridge, T. C., Caley, M. J. & Baird, A. H. The point count transect method for estimates of biodiversity on coral reefs: Improving the sampling of rare species. PLoS ONE 11, e0152335 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. J. North Am. Benthol. Soc. 27, 906–919 (2008).

    Article 

    Google Scholar 

  • 8.

    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Bortolus, A. Error cascades in the biological sciences: The unwanted consequences of using bad taxonomy in ecology. AMBIO A J. Hum. Environ. 37, 114–118 (2008).

    Article 

    Google Scholar 

  • 10.

    Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    Article 

    Google Scholar 

  • 11.

    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. ARPN J. Eng. Appl. Sci. 12, 3218–3221 (2017).

    Google Scholar 

  • 12.

    Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA for Biodiversity Research and Monitoring. (Oxford University Press, 2018).

  • 13.

    Sales, N. G. et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Iacolina, L. et al. eDNA and metabarcoding for rewilding projects monitoring, a dietary approach. Mamm. Biol. https://doi.org/10.1007/s42991-020-00032-y (2020).

    Article 

    Google Scholar 

  • 15.

    Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, 1–9 (2012).

    Google Scholar 

  • 16.

    Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE 12, 1–16 (2017).

    Article 
    CAS 

    Google Scholar 

  • 17.

    Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Lodge, D. M. et al. Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 21, 2555–2558 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, (2015).

  • 21.

    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Cavallo, C. et al. Molecular analysis of predator scats reveals role of salps in temperate inshore food webs. Front. Mar. Sci. 5, 381 (2018).

    Article 

    Google Scholar 

  • 23.

    Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10, 1–20 (2015).

    Google Scholar 

  • 24.

    Xu, C. C. Y., Yen, I. J., Bowman, D. & Turner, C. R. Spider web DNA: A new spin on noninvasive genetics of predator and prey. PLoS ONE 10, e0142503 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    De Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 18, 474–489 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Fløjgaard, C., De Barba, M., Taberlet, P. & Ejrnæs, R. Body condition, diet and ecosystem function of red deer (Cervus elaphus) in a fenced nature reserve. Glob. Ecol. Conserv. 11, 312–323 (2017).

    Article 

    Google Scholar 

  • 28.

    Lopes, C. M. et al. Ecological specialization and niche overlap of subterranean rodents inferred from DNA metabarcoding diet analysis. Mol. Ecol. 00, 1–11 (2020).

    Google Scholar 

  • 29.

    Aizpurua, O. et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Mol. Ecol. 27, 815–825 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Jo, H. et al. Discovering hidden biodiversity: The use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems. Ecol. Evol. 6, 219–232 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Boyer, S., Cruickshank, R. H. & Wratten, S. D. Faeces of generalist predators as ‘biodiversity capsules’: A new tool for biodiversity assessment in remote and inaccessible habitats. Food Webs 3, 1–6 (2015).

    Article 

    Google Scholar 

  • 32.

    Schnell, I. B. et al. iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool—Prospects, pitfalls and avenues to be developed. Front. Zool. 12, 24 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 35.

    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    McInnes, J. C. et al. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol. Evol. 8, 192–202 (2017).

    Article 

    Google Scholar 

  • 37.

    Mortensen, P. H. Tofte Skov of Mose – status. (2012).

  • 38.

    Roper, T. J. Badger. (HarperCollins UK, 2010).

  • 39.

    De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Ficetola, F. et al. An In silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 434 (2010).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Boyer, F. et al. obitools: A unix-inspired sotfware package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018).

  • 44.

    Oksanen, A. J. et al. Vegan: community ecology package. R package version 2.0-2. R J. (2017).

  • 45.

    Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, 1–15 (2019).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Kruuk, H. & Parish, T. Feeding specialization of the European badger Meles-Meles in Scotland UK. J. Anim. Ecol. 50, 773–788 (1981).

    Article 

    Google Scholar 

  • 47.

    Teerink, B. Atlas and Identification Key—Hair of West European Mammals. (Cambridge University Press, 1991).

  • 48.

    Jensen, T. S. Mus, rotter og spidsmus. (Natur og Museum, 1993).

  • 49.

    Day, M. G. Identification of Hairs and feather remains in the gut and faeces of stoats and weasels. J. Zool. 148, 201–217 (1966).

    Article 

    Google Scholar 

  • 50.

    Fog, K., Schmedes, A. & Lasson, D. R. Nordens pattedyr og krybdyr. (GAD, 1997).

  • 51.

    Toft, S. Leddyrenes biologi. (Biological Institute, Aarhus University, 2000).

  • 52.

    Mazziotta, A. et al. Dataset on species incidence, species richness and forest characteristics in a Danish protected area Data in Brief. eCollection 1, 895–897 (2016).

    Google Scholar 

  • 53.

    Mortensen, P. H. Høstemark – status. (2001).

  • 54.

    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Biffi, M. et al. Comparison of diet and prey selectivity of the Pyrenean desman and the Eurasian water shrew using next-generation sequencing methods. Mamm. Biol. 87, 176–184 (2017).

    Article 

    Google Scholar 

  • 56.

    Spitzer, R. et al. Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities. Eur. J. Wildl. Res. 65, 1–14 (2019).

    Article 

    Google Scholar 

  • 57.

    Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49, 324–339 (2019).

    Article 

    Google Scholar 

  • 58.

    Elmeros, M. et al. The diet of feral raccoon dog (Nyctereutes procyonoides) and native badger (Meles meles) and red fox (Vulpes vulpes) in Denmark. Mammal Res. 63, 405–413 (2018).

    Article 

    Google Scholar 

  • 59.

    Madsen, S. A. & Elmeros, M. Seasonal food of badgers (Meles meles) in Denmark. Mammalia 66, 341–352 (2002).

    Article 

    Google Scholar 

  • 60.

    Pagh, S., Tjørnløv, R. S., Olesen, C. R. & Chriel, M. The diet of Danish red foxes (Vulpes vulpes) in relation to a changing agricultural ecosystem. A historical perspective. Mammal Res. 60, 319–329 (2015).

    Article 

    Google Scholar 

  • 61.

    Soe, E. et al. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mamm. Rev. 47, 198–211 (2017).

    Article 

    Google Scholar 

  • 62.

    Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count?. Mol. Ecol. Resour. 13, 620–633 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Mumma, M. A. et al. A comparison of morphological and molecular diet analyses of predator scats. J. Mammal. gyv160 (2015). https://doi.org/10.1093/jmammal/gyv160.

  • 64.

    Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).

    Article 

    Google Scholar 

  • 65.

    Leempoel, K., Hebert, T. & Hadly, E. A. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. bioRxiv (2019). https://doi.org/10.1101/634022.


  • Source: Ecology - nature.com

    Old-growth forest carbon sinks overestimated

    MIT engineers make filters from tree branches to purify drinking water