Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).
Google Scholar
Duelli, P., Obrist, M. K. & Schmatz, D. R. Biodiversity evaluation in agricultural landscape: Above-ground insects. Argicult. Ecosyst. Environ. 74, 33–64 (1999).
Google Scholar
Depraetere, M. et al. Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecol. Indic. 13, 46–54 (2012).
Google Scholar
Green, S. E., Rees, J. P., Stephens, P. A., Hill, R. A. & Giordano, A. J. Innovations in camera trapping technology and approaches: The integration of citizen science and artificial intelligence. Animals 10, 132 (2020).
Google Scholar
Roberts, T. E., Bridge, T. C., Caley, M. J. & Baird, A. H. The point count transect method for estimates of biodiversity on coral reefs: Improving the sampling of rare species. PLoS ONE 11, e0152335 (2016).
Google Scholar
Stribling, J. B., Pavlik, K. L., Holdsworth, S. M. & Leppo, E. W. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. J. North Am. Benthol. Soc. 27, 906–919 (2008).
Google Scholar
Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).
Google Scholar
Bortolus, A. Error cascades in the biological sciences: The unwanted consequences of using bad taxonomy in ecology. AMBIO A J. Hum. Environ. 37, 114–118 (2008).
Google Scholar
Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. ARPN J. Eng. Appl. Sci. 12, 3218–3221 (2017).
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA for Biodiversity Research and Monitoring. (Oxford University Press, 2018).
Sales, N. G. et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).
Google Scholar
Iacolina, L. et al. eDNA and metabarcoding for rewilding projects monitoring, a dietary approach. Mamm. Biol. https://doi.org/10.1007/s42991-020-00032-y (2020).
Google Scholar
Thomsen, P. F. et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE 7, 1–9 (2012).
Weltz, K. et al. Application of environmental DNA to detect an endangered marine skate species in the wild. PLoS ONE 12, 1–16 (2017).
Google Scholar
Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).
Google Scholar
Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 1–9 (2020).
Google Scholar
Lodge, D. M. et al. Conservation in a cup of water: Estimating biodiversity and population abundance from environmental DNA. Mol. Ecol. 21, 2555–2558 (2012).
Google Scholar
Drummond, A. J. et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. Gigascience 4, (2015).
Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
Google Scholar
Cavallo, C. et al. Molecular analysis of predator scats reveals role of salps in temperate inshore food webs. Front. Mar. Sci. 5, 381 (2018).
Google Scholar
Hawkins, J. et al. Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10, 1–20 (2015).
Xu, C. C. Y., Yen, I. J., Bowman, D. & Turner, C. R. Spider web DNA: A new spin on noninvasive genetics of predator and prey. PLoS ONE 10, e0142503 (2015).
Google Scholar
De Vere, N. et al. Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Sci. Rep. 7, 1–10 (2017).
Google Scholar
Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 18, 474–489 (2018).
Google Scholar
Fløjgaard, C., De Barba, M., Taberlet, P. & Ejrnæs, R. Body condition, diet and ecosystem function of red deer (Cervus elaphus) in a fenced nature reserve. Glob. Ecol. Conserv. 11, 312–323 (2017).
Google Scholar
Lopes, C. M. et al. Ecological specialization and niche overlap of subterranean rodents inferred from DNA metabarcoding diet analysis. Mol. Ecol. 00, 1–11 (2020).
Aizpurua, O. et al. Agriculture shapes the trophic niche of a bat preying on multiple pest arthropods across Europe: Evidence from DNA metabarcoding. Mol. Ecol. 27, 815–825 (2018).
Google Scholar
Jo, H. et al. Discovering hidden biodiversity: The use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems. Ecol. Evol. 6, 219–232 (2016).
Google Scholar
Boyer, S., Cruickshank, R. H. & Wratten, S. D. Faeces of generalist predators as ‘biodiversity capsules’: A new tool for biodiversity assessment in remote and inaccessible habitats. Food Webs 3, 1–6 (2015).
Google Scholar
Schnell, I. B. et al. iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool—Prospects, pitfalls and avenues to be developed. Front. Zool. 12, 24 (2015).
Google Scholar
Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
Google Scholar
Siegenthaler, A. et al. Metabarcoding of shrimp stomach content: Harnessing a natural sampler for fish biodiversity monitoring. Mol. Ecol. Resour. 19, 206–220 (2018).
Google Scholar
Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
Google Scholar
McInnes, J. C. et al. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol. Evol. 8, 192–202 (2017).
Google Scholar
Mortensen, P. H. Tofte Skov of Mose – status. (2012).
Roper, T. J. Badger. (HarperCollins UK, 2010).
De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).
Google Scholar
Taberlet, P. et al. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 21, 1816–1820 (2012).
Google Scholar
Ficetola, F. et al. An In silico approach for the evaluation of DNA barcodes. BMC Genom. 11, 434 (2010).
Google Scholar
Boyer, F. et al. obitools: A unix-inspired sotfware package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2018).
Oksanen, A. J. et al. Vegan: community ecology package. R package version 2.0-2. R J. (2017).
Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, 1–15 (2019).
Google Scholar
Kruuk, H. & Parish, T. Feeding specialization of the European badger Meles-Meles in Scotland UK. J. Anim. Ecol. 50, 773–788 (1981).
Google Scholar
Teerink, B. Atlas and Identification Key—Hair of West European Mammals. (Cambridge University Press, 1991).
Jensen, T. S. Mus, rotter og spidsmus. (Natur og Museum, 1993).
Day, M. G. Identification of Hairs and feather remains in the gut and faeces of stoats and weasels. J. Zool. 148, 201–217 (1966).
Google Scholar
Fog, K., Schmedes, A. & Lasson, D. R. Nordens pattedyr og krybdyr. (GAD, 1997).
Toft, S. Leddyrenes biologi. (Biological Institute, Aarhus University, 2000).
Mazziotta, A. et al. Dataset on species incidence, species richness and forest characteristics in a Danish protected area Data in Brief. eCollection 1, 895–897 (2016).
Mortensen, P. H. Høstemark – status. (2001).
Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).
Google Scholar
Biffi, M. et al. Comparison of diet and prey selectivity of the Pyrenean desman and the Eurasian water shrew using next-generation sequencing methods. Mamm. Biol. 87, 176–184 (2017).
Google Scholar
Spitzer, R. et al. Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities. Eur. J. Wildl. Res. 65, 1–14 (2019).
Google Scholar
Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49, 324–339 (2019).
Google Scholar
Elmeros, M. et al. The diet of feral raccoon dog (Nyctereutes procyonoides) and native badger (Meles meles) and red fox (Vulpes vulpes) in Denmark. Mammal Res. 63, 405–413 (2018).
Google Scholar
Madsen, S. A. & Elmeros, M. Seasonal food of badgers (Meles meles) in Denmark. Mammalia 66, 341–352 (2002).
Google Scholar
Pagh, S., Tjørnløv, R. S., Olesen, C. R. & Chriel, M. The diet of Danish red foxes (Vulpes vulpes) in relation to a changing agricultural ecosystem. A historical perspective. Mammal Res. 60, 319–329 (2015).
Google Scholar
Soe, E. et al. Europe-wide biogeographical patterns in the diet of an ecologically and epidemiologically important mesopredator, the red fox Vulpes vulpes: a quantitative review. Mamm. Rev. 47, 198–211 (2017).
Google Scholar
Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count?. Mol. Ecol. Resour. 13, 620–633 (2013).
Google Scholar
Mumma, M. A. et al. A comparison of morphological and molecular diet analyses of predator scats. J. Mammal. gyv160 (2015). https://doi.org/10.1093/jmammal/gyv160.
Harper, L. R. et al. Environmental DNA (eDNA) metabarcoding of pond water as a tool to survey conservation and management priority mammals. Biol. Conserv. 238, 108225 (2019).
Google Scholar
Leempoel, K., Hebert, T. & Hadly, E. A. A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity. bioRxiv (2019). https://doi.org/10.1101/634022.
Source: Ecology - nature.com